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I. INTRODUCTION

The contract N00019-77-C-0127 was awarded to the University of Illinois

by the Naval Air Systems Command for "Mutual Admittance Between Slots on a

Cylinder or Cone" for a one-year period, 16 Novembez 1976 to 15 November 1977.

Mr. J. Willis of AIR-310B is the contract monitor.

This is the final report for the contract, covering personnel (section II),

technical results (section III and attachments), publications and presentations

(section IV).

The attachments have their own pagination. The report is page numbered in lower

left-hand and right-hand corners.
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III. TECHNICAL RESULTS

In the design of a slot array on a conformed surface, a most important

parameter is the mutual admittance Y12 between two slots. In the present

contract, we have studied the following problems about Y

(a) When the conformal surface is a conducting cylinder, a GTD solution

of'Y 12 has been successfully developed. It applies to cylinders with radius

greater than one wavelength, and gives excellent numerical results (error is

within 0.25 dB in magnitude and several degrees in phase). Details are given

in Attachment A.

(b) For the slot array on a cylinder, a simple approximate solution of

Y12 is derived. It is generally valid when the separation between the slots

is greater than two wavelengths (Attachment B).

(c) The GTD solution described in (a) has been generalized, so that it

now can be used to calculate YI2 between slots on a general convex conducting

surface. In particular, it was applied to slots on a cone, and the numerical

results of Y12 are in good agreement with the experimental results (Attachment

C).

3
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1. INTRODUCTION

In the design of a conformal slot array on the surface of a

conducting cylinder, the calculation of the mutual admittance YI2

is a crucial step, which has been studied extensively in recent years.

In this paper, we summarize, in a handbook format, all of the final

formulas of YI2, and present some typical numerical data.

2. STATEMENT OF PROBLEM

Referring to Figure 1, two identical slots, circumferential or

axial, are located on the surface of an infinitely long cylinder. The

geometrical parameters are

R - radius of the cylinder (2.1)

(a,b) = dimensions of the slot along (*,z) directions (a is

the arc length along the cylinder) (2.2)

(z0,R00 )  center-to-center distances between slots (2.3)

iso +R2 (2.4)

00 X tan-l(zo/Ro )  (2.5)

The problem is to determine the mutual admittance between these two

slots when kR is large.

13
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Figure 1. Two identical slots on the surface of a cylinder.
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First let us define mutual admittance. Throughout this work

we always assume that

(i) the slots are thin, and (2.6a)

(ii) their length is roughly a half-wavelength. (2.6b)

Then the aperture field in each slot can be adequately approximated by

a simple cosine distribution, which is the so-called "one-mode" approximation.

For example, if slot 1 is a circumferential (lower slot in Figure la), I
its aperture field under the "one-mode" approximation is given by

(exp + jut time convention)

Ih (2.7a)

where

e = / coSa y , = *Xx e (2.7b)

y R. (2.7c)

(V1,11) are respectively the modal (voltage, current) of slot 1. The

mutual admittance Y is defined by
121

Yl2 2l V1  (2.8)

where 121 is the induced current in slot 2 when slot 1 is excited by

a voltage V1 and slot 2 is short-circuited. An alternative expression

for Y is
12

Y 1 l Ft 2 x2 t1, d2 (2.9)
Y12 "V' 2  A2

.2

where
A2 a aperture of slot 2

- magnetic field when slot 1 is excited with voltage Vl, and

slot 2 is covered by a perfect conductor

E 2  electric field when slot 2 is excited with voltage V 2, and

slot I is covered by a perfect conductor.

3 15



Because H1 = h and = e it is a simple matter to verify that
21.2 2

(2.8) and. (2.9) are equivalent [1].

There is an alternative definition of mutual admittance. Instead

of (2.7), a modal voltageV1 (with a bar) may be defined through the

expression for the aperture field of slot 1 as follows:

E V cos 1 y (2.1oa)

or equivalently

fb/2
V =  (i • dz . (2.10b)

-b/2

Then a different mutual admittance Y 12 is defined by (2.9) after replacing

(V1 ,V2 ) by (VIV2. It can be easily shown that

T1 = -b1 (2.11)
12 2b 12

Two remarks are in order: () In the limiting case that b 4 0, Y U goes

to zero as b , whereas Y12 approaches a constant independent of b.

(ii) For the special case a - A/2 and R 4 , it is i2 that is

identical to the mutual impedance Z between two corresponding dipoles
12

calculated by the classical Carter's method [2], [3), [4]. (ii1) When

the slots are excited by waveguides (transmission lines), one often uses

Y2 (Y). From %ere on, we will concentrate on Y2 instead of YI2 '

The mutual admittance defined in (2.8) and (2.9) includes the self

admittance Y aq a special case which occurs when two slots coincide.
11

(All the formulas of Y12 given in this paper, except for the one in

Section 4, can be used for calculating Y11 by setting 0 0 and z0 - 0.)

16



3. EXACT HUGHES (GSP) MODAL SOLUTION

Once the one-mode approximation in (2.7) is accepted, Y12 can be

determined exactly in terms of cylindrical modal functions, as has been

done by Stewart, Golden, and Pridmore-Brown [5], [6]. The final result

reads:

Circumferential slots

Y12 J dkz  I (m,kz )G(m,kz)e z 0 (3.1)

where 2
,m~kz) = ab sin (kzb/2) fsin (0 a 4 ir/2) sin (0a r/2).

d.11. +. +-(3282 R (k b/2)(2 m~a + n/2) (ma -i;/2) (3.2)

a - (a/2R)

Lik H(2 (k R) mk \kt H(2 (k R)j
G(-,k) k () 2 k 1 k.

H(2 ) k R H 2 (k R)
tt I t

-J k 2  if k > k2 z

ktu

J(~ 2-~n, if (3.5)

Axial slots

YI2 =  dkz (m'kz F(m,kz ) e - m 0  z k z 0 )  3

where L i k ie

__ sin(mo a) o~ b/2) 2S -  a)  cs(kz (3.6)
z 8R (-) (k zb/2) (/2)2

t H 2m (ktR)

F(mk ) YO 0 i{(2) I (3.7)

517



This solution is suitable for numerical calculation if i) z0 < b for

circumferential slots, and z < a for axial slots, (ii) kR is less than

20, and (iii) the medium is slightly lossy so that k has a small

(negative) imaginary part. Based on this solution, extensive numerical

results have been reported by Hughes Aircraft Company at Culver City

[7], [8), [9].

4. EXACT UI MODAL SOLUTION

Under the one-mode approximation, another exact modal solution is

given in [10]. This solution is derived from the Hughes (SGP) solution

in Section 3 by a deformation of integration contour and art application

of the Duncan transform [11]. THe final result reads

Circumferential slots

Y2 C + .jlI (4.1a)

k

C -" ) --" o: u  (r,, )f C(c,,k I,) ( ,, (4.1b)

B a f R(,Ik )q'(r,k ) silu kz dk

+ 10R(m,j n) q,(n,J n)e di .(41c

C - 2 kt k ) (4 2)

+ () R (x) + Y () (4.3)

wk 2

r I_ z

RI,, k ) = 6 (4.5)

: 186



0(m,k z) is defined in (3.2) and kt in (3.4) (4.6)

Axial slots o d

8Y Co cos m0 k jk z dk
Y12 '2 rkR~ £L O (m,k )eikz02I -m0 0t

+ j o(mJn)e 0 (4.7)
0 N2R72+k mV

where f(m,k ) is defined in (3.6)z

This solution is valid only if z0 > b for circumferential slots and

Zo> a for axial slots. It is suitable for numerical calculation if

kR is less than 20.

5. ASYMPTOTIC SOLUTION

The two moJal solutions given in Sections 3 and 4 are based on

fields in the Fourier transform domain. An alternative calculation of

Y12 involves the field in the spatial domain, namely,

Circumferential slots

Y A A2 dY2dz2 [cos a o d2 - R 0)]go(s'8) (5.1)

Axial slots

-2 dyldzl dz [cos ! ][cos b(z2 - z0)]g (s,8) (5.2)
12 2 7f A1

where (y n, z) a typical point in the aperture of slot n (n - 1 or 2).

(5.3)
An a aperture of slot n (5.4)

s = J(Y2 - Yl) 2 + (z2 - z1)2 (5.5)

6 = tan 1[(z2 - z1)/(y2 - yl) ]  (5.6)
7 19
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Several versions of the Green's functions g, and g have been approximately

determined under the condition that kR >> 1. They are listed as follows:

OSU Asymptotic solution [12) [13]

g ' G(s) [v(E) sin2 + (-u( cos20] (5.7)
ks 21

g ' G(s) [v(&) cos2O + ( s)u(M) sin 0] (5.8)

PINY Asymptotic solution [9] [14]

g G(s)v(C)[sin 2 6 + L (1 - 3 sin2e)]

+ _j sec 2e[u( ) - v (W sin2 ] (5.9)

g Gs) v(M) [cos2O + (2 - 3 cos 28)] (5.10)
z ks

UI Asymptotic solution [15]

C(s) v(&)[sin 0 + J-cos23] 1 )u~o 2 ~ + (+ (-) sin2e]Cks ka ks ks

+ J(v/2kR/cos20)- 2/3[v'(9) sin 2 + (tan O + J-)u'(&) cos2O3 (5.11)

z -G(s) v([Cos 2 - cos20] + (L)u( )[sin 26(l - ;1) + ( ) cos20]2 1ks ks ka k

+ J(r2 kR/cos 2 )'21 3 [v'()cos28 + (1 + Is)U()sin2e] (5.12)

where 2
k Y 0 e-jks -1G(s) Y 2j ks YO (120) (5.13)

4 2 1/3 (.4
(k cos40/2R) s (5.14)

The Fock functions, u, v, etc., can be calculated from the following

two representations:

For 0 5 < 0.7

20 8



u( ) e-/4 3/2+ 3 + 7V' -jr/4 9/2
v( W , 4 e 60 51 e 4.141 x 10-3 6  (5.15)

' jw/4 3/2 +5a 3 i"i -J~r/4 9/2 -
u) --- + + 4e -3.701 x 10 (5.16)

vrr + J'/4 3/ 2 -1 t3 7/7 -Jwr/4 9/2
-1Q I e 64 + 4.555 x 10-2 6  (5.17)

V' Q) e -j 3,/4 1/2 +2. 2 + 63V i e-j r/4 7/2 - 2.485 x 10-2 (5.18)
8 e ~ +20 10 2 4 e

,jw412 E 45r e-Jyr/4 7/2

( r) , 3 + 4 2 -/ - 2.221 x 10 E (5.19)

For 0.7 _ E

v(Q) =e-J/4/- J/2 10 n

n-i

u( ):e = e/2V 3/2 10 -i~tn(.1

e (5.22)

Vl( ) - eJ r/4 3/2 10 e n5.3nle -/43 1/2 10 / n2

v'() z e-/4 2 (1l E J2t')( (5.21)

ir ~ ~ I M z r42V-rE/ J t n~eJt

n1i - . (5.24)

where t teXp(-ji/3) t' It' exp(-j/3) and (nn-1

_______1___Itni _ _ __ _ _

1 2.33s11 1.01879 6 9.02265 8.48849

2 4.08795 3.24820 7 10.04017 9.53545

-It II'

3 5.52056 4.82010 8 11.00852 10.52766

4 6.78671 6.16331 9 11.93602 11.47506

5 7.99413 7.37218 10 12.82878 12.38479

9 
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It has been verified through several hundred numerical examples that the

UI asymptotic solution given above is in excellent agreement (within a

quarter db in magnitude and a few degrees in phase) with the exact model

solution for all slot separations (oZo) provided that kR 5.

In using the asymptotic solutions for calculating the self admittance

Yl care must be exercised in avoiding the singularity in the Green's

function which occurs at s -O. A most convenient way to avoid this

apparent difficulty is to (i) use a large number of points for the two

surface integrals in (5.1) and (5.2), and (ii) shift slightly the

integration nets for this two surface integrals.

6. EXACT PLANAR SOLUTION

In the limit kR + the Green's function of the UI solution in (5.11)

and (5.12) is reduced to

go G(s)[uin 0 + ~-(2 -3 sin2O( ~) (6.1)
ks ks

z "G(s)[cos 28 + J (2 -3 cos2O)(l - L s (6.2)
z ks ks~

When (6.1) and (6.2) are used in (5.1) and (5.2), we obtain the exact

solution (under the "one-mode" approximation of course) for two slots

on an infinitely large, conducting plane.

7. APPROXIMATE SOLUTION

Based on the UI asymptotic solution, a simple approximate solution,

is reported in [10], i.e.,

Circumferential slots

8ab S(b sin 0) C(a sin 0)]2  (7.1)

22 10



Axial slots

8ab 2
Y - [S(a cos 9) C(b sin 8)] 1 7.2)

where

S(x) sin (~_~/) cos (kx/2) '7.3)
(xI 2 ) "7C.x)(kx/2) - (kx/) 2

The (simplified) Green's functions g and g are given by

" G(s)[v(Q)(sin2 8 + J- cos 20) + u( )cos 2 e

+ ju' (C)(42 kR cos 0)-2/3 sin4  l ] 14

gz uG(s)v~ (cos 0 - cos 20) + J-u(t) sin2  ] (7.5)

This solution gives an accurate numerical result (within several

percent in magnitude and less than 50 in phase) provided that

kR Z 10 and the slot separation is greater than two wavelengths.

8. CONCLUDING RM4ARKS

Based on extensive numerical data, we conclude that Y12 (including

Y as a special case) can be best calculated by

(i) Hughes modal solution if kIR 5 and z is less than the axial

dimension of the slot,

(ii) UI modal solution if kR 5 and z is greater than the axial

dimension of the slot, and

(iii) UI asymptotic solution if ikR Z 5 for all slot separations.

If several percents of error are acceptable, the approximate solution

can be used if kR Z 10 and the slot separation is greater than two

wavelengths. 23
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APPENDIX A: NUMERICAL RESULTS i

By using the formulas of Y 2presented in the text, we have analyzed

the following 6slots:I

Slot Type Dimension Suggested by

0. 9" x 0. 4" AerospaceA Circumf, (f - 9 GHz) Hughes

B Circumf, 0.kx0OXHansen
(R in inch)

C xal04"~ x 0.9" Aerospace
C Aial(f =9 GHz) Hughes

D Circuif. 0.5x x 0OlOX Hansen
(R in X)

E Circumf. 0.5X x 0.2X Hansen

F Axial 0.5xOx .2X

In all tables, Y is listed in (db, phase in degree) format where

db = 20 log10  Y1  in mho). In all figures, the normalized phase

of Y is equal to Arg(Y12expjks0)

26 14



DATA SET A OF MUTUAL ADMITTANCE

(1) The mutual admittance Y12 between two circumferential slots on an

infinitely long cylinder is calculated from the

* (Exact) Hughes modal solution

* (Exact) UI modal solution

UI asymptotic solution

* OSU asymptotic solution

* PINY asymptotic solution.

The parameters are

* Frequency: f 9 GHz, k 4.7878 (inch) -  1.3123"

* Cylinder: R f 1.991" unless specified otherwise

* Slot A: Circumferential

a 0.9" 0.6858X

b = 0.4" 0.3048A

IY 1.70747 x 10.3 mho -55.35 db

-3
Y 1.8155 x 10 mho

9I

Center-to-center distance between two slots is (R0oz 0 ).

(2) Y is listed in (db value, phase in degree), where

db value 20 log10 (1Y121 in mho).

(3) Data are presented in

TABLE A-1: 00 = 0 and various z
0l

A-2: z0 = 2" and various 00

A-3: z= 0 and various 0

A-4: O = 0 and various z0.

Figure A-l: Mutual admittance Y between two circumferential slots

as a function of 
12

A-2 Mutual admittance Y12 between two circumferential slots
as a function of z .

A-3: [Y12 1 on a cylinder (UI modal solution) and that

on a plane as a function of zO.0

A-4: Y12 on a cylinder as a function of the radius R of the

cylinder.
15 27
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TABLE A-I

Y12 OF SLOT A FOR o0 0

Modal Asymptotic
Exact Planar

z 0Hughes UI UI OSU PINY R= OD

-62.62 db -6.2 -62.54 -64.22 -61.7 -63.69

-720 -72°  -72°  -430 -680 -670

-71.87 -71.78 -71.66 -73.67 -70.96 -73.53

-117° -117° -116° -1000 -118° 1060

8 -82.3 -81.84 -81.83 -85.46 -80.80 -85.4

0 0 0 50 30 5033o  34°  37o  55o  34o  54o I

-86.48 -86.6 -91.41 -85.26 -91.40
16"1F0 0 0 0 0-4 -1 20 -4 19

-91.95 -92.46 -99.34 -90.83 -99.33
4011

-115 °  -110 °0 -83 0 -112 0 -83 0
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TABLE A-2

Y OF SLOT AFOR z 2"
12 o

Modal ______Asymptotic

Hughes UI UI OSU PINY

00 -71.87 db -71.78 -71.66 -73.67 -70.96
0 00 0.

-117 0-117 0 -116 0 -100 0 -lid

30 -77.60 -77.42 -77.69 -79.25 -76.640

1701750 1770 1700 1720

0 -89.98 -90.00 -90.17 -91.11 -88.41
600

,00 0 0040 -3 -1 6 -10~

-103.15 -102.52 -103.10 -103.83 -101.69
90 0

1160 1200 1160 1190 1060

TABLE A-3

Y OF SLOT AFOR z 0
12 0

01 Modal Asymptotic

Hughes UI OSU PINY

-81.33 db -81.34 -89.72 -83.14
03000

-770 -750 -62 -6o

40 -89.87 -90.02 -98.66 -91.11

168 0  1700 1740 -1800

50 -96.37 -96.72 -105.95 -97.43

00 00
58 061 058 0690

-101.97 -102.48 -1.12.59 -102.93

-49 -470 -550 -390

417 29



TABLE A-4

Ul SOLUTIONS OF Y OF SLOT A FOR = 0
12 o

z Modal Asymptotic z°  Modal Asymptotic

0.5" -62.62 db -62.54 ii" -84.06 -84.06

-720 -720 -700 -680

s -66.82 -66.71 12" -84.61 -84.65

1550 1550 150 180

2" -71.78 -71.66 13" -85.12 -85.20

-1170 -116 °  1000 1030

31 -74.78 -74.67 14 -85.63 -85.70

-31 -30 -175 °  -1720

-76.89 -76.89 -86.09 -86.17
540 540 -900 -860

-78.51 -78.44 16" -86.48 -86.60

1390 1410 -40

6" -79.85 -79.77 17" -86.85 -87.01

-136 -134 81 84

-80.94 -80.88 18" -87.24 -87.38

-510 -490 1660 1700

8" -81.84 -81.83 20" -87.91 -88.08
34o  37o  -240 -19o

-82.65 -82.66 30" -90.33 -90.68
00 00119 122 110 1150

i0" -83.40 -83.40 40l -91.95 -92.46
-156 0 -153 0 115 °0 -110 °0

30 18
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DATA SET B OF MUTUAL ADMITTANCE

(1) The mutual admittance Y between two circumferential slots on an

infinitely long cylinder is calculated from the

* (Exact) UI modal solution

UI asymptotic solution.

The parameters are

* Frequency: f 9 GHz, k = 4.787787 (inch)- , X = 1.3123"

* Cylinder: R = 1.991" , 3.777", 6"

* Slot B: Circumferential

a = 0.656168" - 0.50X

b = 0.013123" - O.O1

Center-to-center distance between two slots is (Roz0 ).

(2) Y is listed in (db value, phase in degree), where

db value - 20 log1 0 (IYI in mho).

(3) Data are presented in

TABLE B-i: 0= 0 and various z0

B-2: z= 2" and various 0

B-3: z 8" and various

B-4: Comparison of Hughes and UI solutions

35
23



TABLE B-1

UI SOLUTIONS OF Y12 OF SLOT B FOR ° = 0

R = 1.991" R 3.777" R 6"
Exact Planar

z Modal Asymp Modal Asymp Modal Asymp R=oo

0.5" -92.00 db -92.03 -92.48 -92.52 -92.70 -92.74 -93.11

0.1" 150 153 156: 0-79°  -78 -77 -78 -76 -76 -74

lo -96.31 -96.28 -96.97 -96.92 -97.24 -97.19 -97.61

152 153 156 159 157 157 1550

2" -101.33 -101.32 -102.20 -102.17 -102.56 -102.54 -103.20
-1170 -1160 -1130 -1130 -iii°  -1110 -1090

41 -106.50 -106.51 -107.70 -107.66 -108.23 -108.77 -109.10
00 0 0 0 0 0540 56 60 61 63 63 67

8" -111.48 -111.56 -113.13 -113.11 -113.85 -113.81 -115.08

360 370 420 430 460 460 530

16" -116.13 -116.35 -118.37 -118.38 -119.36 -119.33 -121.10
_ 40 -1 50 60 100 100 200

36 24



TABLE B-2

UI SOLUTIONS OF Y OF SLOT B FOR z =2"
12 0

R " 1.991" R 3.777" R = 6.0"

Modal Asymp Modal Asymp Modal Asymp

100 -102.01 db -102.04 -104.18 -104.22 -106.89 -106.94

-1250 -1250 -1400 -1400 -1770 -177 °

200 -103.94 -104.11 -109.18 -109.36 -115.80 -115.93

-1490 -1480 1420 1430 110 120

300 -106.86 -107.20 -115.53 -1,15.75 -124.77 -124.95

1720 1730 270 280 1400 1410

450 -112.51 -112.98 -125.07 -125.40 -136.67 -136.82

920 930 1690 1700 1060 1050

600 -119.01 -119.28 -134.48 -134.38 -148.07 -147.24
i0 0 810 -770 510 440

900 -131.40 -131.83 -148.22 -150.57 -155.92 -165.47

1100 1060 1320 1130 -1700 -1020

II
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TABLE B-3

UI SOLUTIONS OF Y OF SLOT B FOR z°  8"
12 0

R - 1.991" R - 3.777" R - 6.0"

Modal Asymp Modal Asymp Modal Asymp

100 -111.63 db -111.74 -113.45 -113.47 -114.44 -114.46

320 340 340 340 260 260

200 -112.08 -112.29 -114.40 -114.54 -116.18 -116.32
240 260 90 90 -340 -340

300 -112.83 -113.18 -115.94 -116.26 -118.94 -119.21

110 130 -320 -320 1300 -129 °

450 -114.41 -115.12 -119.29 -119.82 -124.43 -124.85

_170 -16°  -1220 -1210 270 290

600 -116.70 -117.70 -123.69 -124.22 -131.31 -131.37

-560 550 1180 1210 1270 1300

900 -122.98 -124.10 -134.62 -134.27 -146.21 -145.33

-1610 1590 1690 1720 -1320 1460

38 26



TABLE B-4

COMPARISON OF HUGHES AND UI SOLUTIONS

R - 1.991" R - 3.777" R 6"

-0 Hughes UI Hughes UI Hughes UI0! 0o Z Modal Modal Modal
0Ma Modal Asymp Modal Asymp Modal Asymp

0.5" -92.3 db-92 -92.03 -92.83 -92.48 -92.52 -92.87 -92.70 -92.74

- 79o  -79 -78°  -77 0 -77 -78°  -76 -76 -760

i" -96.5 -96.31 -96.28 -97.18 -96.97 -96.92 -97.34 -97.24 -97.19

1530 1520 1530 1570 1560 1590 156°  1570 1570

0

-112.02 -111.5 -111.56 -113.65 -113.13 -113.11 -114.42 -113.85 -113.81
0 0 0 0 0 0 0 0 0330 36 37 40 42 43 44 46 46

16" -117.08 -116.13 -116.35 -119.27 -118.37 -118.38 -119.36 -119.33

-6°  -4 _1 30 50 60 100 100

450 2" -112.73 -112.51 -112.98 -125.43 -125.07 -125.40 -137.17 -136.7 -136.82

91°  920 930 1680 1690 1700 1040 1060 1050

27 39
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DATA SET C OF MUTUAL ADMITTANCE

(1) The mutual admittance Y between two axial slots on an infinitely

long cylinder is calculated from the

* (Exact) UI modal solution

* UI asymptotic solution

The parameters are

* Frequency: f = 9 GHz, k 4.7877 (inch)-I , X = 1.3123"

* Cylinder: R = 1.991", and other values

* Slot C: Axial

a - 0.4" 0.3048X

b 0.9" = 0.6858X

* Center-to-center distance between two slots is (R), 0 ).

(2) Y is listed in (db valuit, phase in degree), where db value = 20 log10

(IYI21 in mho)

(3) Data are presented in

TABLE C-l: 0= 0, R 1.991", and various z0.

C-2: z= 1.5", R - 1.991", and various

C-3: = 0, z0  8", and various R.

Figure C-l: IY121 on a cylinder (UI modal solution) and that on

a plane as a function of z

0 40-- 28



TABLE C-i

12 0I
1I2 OF SLOT C FOR_ o- 0 °

z Modal Asymp z Modal Asymp

db
-77.38 -77.28 -123.86 -123.55

0" 12"1-590 -590 1340 1300

-92.00 -91.86 -127.50 -126.23
2"1 14"1

80 60 -51 °  590

-99.48 -99.25 -128.96 -128.55
3"1 16'

890 860 1150 1120

-104.68 -104.36 -131.64 =130.60
4" 18"

1720 1700 -680 -760

-108.88 -108.28 -133.39 -132.43
5" 20"

-1030 -106 °  102 °  950

-111.94 -111.48 -136.07 -135.59
6" 24"

-170 -210 810 770

-114.61 -114.17 -138.79 -138.27
7" 28"

680 640 720 600

-116.93 -116.5 -141.24 -140.59
81 32'1

151 149 °  59°  42°

-119.28 -118.55 -143.68 -142.63

9$ -122° -126° 36 390 250

29 41
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TABLE C-2

Y12 OF SLOT C FOR z= 1.5"

*0Modal Asymptotic

-86.58 db -86.31
00

1510 
1490

-86.41 -85.15
3030°

-26°  -38

-87.43 -85.77
600

840 720

-93.02 -91.0490°

1690 1560

42 30



TABLE C-3

YI2 OF SLOT C FOR 0o 0 and z 8"

R .I Modal Asymptotic

0.995" -118.07 db -116.55

150 1480

1.991" -116.93 -116.50
0, 0

151 1490

-116.91 -116.47
3.982" 1500 1490

5.973" -116.90 -116.46
1540 1490

7.964" -116.89 -116.45

1540 1490

196-116.84 -116.45

11.9646"

153 1490

15.928" -116.82 -116.45

1530 1490

19.910" -116.44

149
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DATA SET D OF MUTUAL ADMITTANCE

(1) The mutual admittance YI2 between two circumferential slots on an

infinitely long cylinder from the

* (Exact) UI modal solution

* UI asymtotic solution

The parameters are

* Cylinder: R = 1X, 2X, 4X, i0?, (planar)

* Slot D: Circumferential

a= 0.5X

b = 0.01X

* Center-to-center distance between two slots is (Roz)

(2) Y is listed in (db value, phase in degree), where

db value 20 logl0 (IYI 21 in mho)

(3) Data are presented in

TABLE D-l: o = 0, R - 2X and various z
0

D-2: %o -0 And various R and z
D-3: % = 0 and various R and z

D-4: z - 0 and various R and o

D-5: z - 0X and various R and_oo 0

D-6: z - 5X and various R and 4o0 0

33 45
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TABLE D-1

UI SOLUTIONS OF Y 2OF SLOT D FOR =0 and R 2X

Modal Asymptotic

-98.60 db -98.56
710 710

-103.87 -103.84
2X 740 750

-106.98 -106.96
70 70

740 750

-10M~7 -109.16

-110.84 -110.85

730 750

-112.19 -112.21
6X 73 0 74 0

-113.32 -113.35

72 ~ 740

-114.28 -114.33
72' 730

9x -115.12 -115.18
710 730

-115.94
lox72
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TABLE D-2

UI ASYMPTOTIC SOLUTIONS OF Y OF SLOT D FOR o=0

~Planar
R=IX R=2X R-4X R-1Oa

z (R = c)

81.51 db 81.51 81.51 81.51
900 90 90 900

-97.49 -98.56 -99.15 -99.51 -99.76

670 710 740 760 770

-102.39 -103.84 -104.63 -105.13 -105.472 X

690 750 790 810 830

3A -105.26 -106.96 -107.92 -108.52 -108.93

690 750 800 830 860

-107.25 -109.16 -110.25 -110.94 -111.40
0 0 0 0 0

68 75 80 84 87

5 -108.76 -110.85 -112.05 -112.81 -113.33

670 750 800 840 870

-109.97 -112.21 -113.51 -114.34 -114.91
67 0 74 °0 80 °0 84 °0 88 °0

-110.98 -113.35 -114.74 -115.63 -116.25

660 740 800 840 880

-111.85 -114.33 -115.80 -116.75 -117.40
8X, 0 0 0 o 065 73 79 84 88

-112.60 -115.18 -116.72 -117.73 -118.43
9x 650 730 790 840 890

-113.27 -115.94 -117.55 -118.61 -119.34
I0o 640 72°  79°  840 89°

47
35
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TABLE D-3

UI ASYMPTOTIC SOLUTIONS OF Y12 OF SLOT D FOR 0 = 0

R2o41Planar
R IX R 2X R -4X R lox (R = co)

z
0 _ _

-93.01 db -93.83 -94.27 -94.55 -94.74
0.5x

-119 °  -116°  -115°  -114 °  -113°

-100.34 -101.62 -102.32 -102.76 -103.05
1.5X

-111 -106 °  -103°  -100 -990

2.5X -103.98 -105.56 -106.44 -106.99 -107.37

ii °  104°  -100 -98 -95

48 36
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TABLE D-4

UI ASYMPTOTIC SOLUTIONS OF Y 12OF SLOT D FOR z 0

12

-7.62 db -43.02 -106.09 -124.64

10 
00

90 0 90 0-59 0 "920

-43.02 -107.10 -121.97 -140.01
20 0

9Q0 -62 29 -200

30 -98.90 -117.45 -131.85 -150.99

190 155.340 1220 520

40 -112.59 -128.38 -143.53 -164.60

-1060 -520 840 1650

0 -121.31 -137.31 -175.95

I? 00 143 ~ 1020 740

37 49



TABLE D-5

UI ASYMPTOTIC SOLUTIONS OF Y OF SLOT D FOR Z =X12 0

R X R -2X R -4X R 10X

-98.12 db -100.56 -105.46 -120.20
10°

620 540 0 1070

-99.93 -105.62 -116.60 -136.65
200

480 40 -160 °  -115°

-102.69 -111.94 -126.33 -148.10
3O°

300 0 026 -75 -18 -17

-107.99 -121.35 -138.27 -162.1245
°0

-24°  1340 -21°  1110

113.88 -129.91 -148.52 -174.13
600

-89 -40 -40 -123

50 38

38



TABLE D-6

UI ASYMPTOTIC SOLUTIONS OF YI2 OF SLOT D FOR z =5X

R =1X R= 2 R =4 R =10x

-108.90 db -111.13 -112.73 -115.49
10°

660 700 610 -25°

-109.31 -111.98 -114.67 -121.98
200

610 540 60 390

-109.98 -113.34 -117.66 -129.87
30

00 00
530 29 -83 -240

-111.47 -116.23 -123.42 -141.86
450

370 -26°  91 -720

-113.50 -119.88 -130.02 -153.21
600

140 -990 -1450 1590

39 51



DATA SET E OF MUTUAL ADMITTANCE

(1) The mutual admittance Y between two circumferential slots on an

12
infinitely long cylinder is calculated from the

* UI asymptotic solution

The parameters are

*Cylinder: R = 1X, 2X, 4X, 1OX

*Slot E: Circumferential

a 0.5X

b = 0.2X

*Center-to-center distance between two slots is (R4ozo )
0

(2) YI2 is listed in (db value, phase In degree), where

db value = 20 log1 0 (1YI 2! in mho)

(3) Data are presented in

TABLE E-1: z = o, various and Ro o

E-2: z = 0.5X, various 4 and R
O 0

E-3: z = I, various 0 and R
o o

E-4: z = 2, various and R
0 0

E-5: z = 4, various ¢ and R

E-6: z =8 , various and R
o 0

E-7: Comparison of UI asymptotic and UI modal solutions

E-8: Comparison of UI asymptotic and UI modal solutions

'igure E-1: Mutual admittance Y between two circumferential slots
as a function of 12

E-2: Mutual admittance Y between two circumferential slots
as a function of 12

0'
E-3: Mutual admittance YI2 between two circumferential slots

as a function of 40"

E-4: Mutual admittance Y between two circumferential slots
12as a function of zO.

E-5: Mutual admittance Y between two circumferential slots
as a function of z12

52 40 14



TABLE E-1

DI ASYMPTOTIC SOLUTIONS OF Y OF SLOT E FOR z = 0
12 0

R D=1A R= 2 R= 4X R= 1O
0

30o -73.94 -91.47 -105.83 -124.96

70 1530 1210 520

0
45°  -86.67 -102.35 -117.50 -138.57-110 -540 830 1650

010

600 -95.31 -111.28 -127.44 -149.93

1400 1010 490 770

53
41



TABLE E-2

UI ASYMPTOTIC SOLUTIONS OF Y FOR z = 0.5X
12 0

R =iX R= 2X R= 4X R= 1OX

0

0°  -67.670 db -68.46 -68.89 -69.16

10°  -69.00 -72.97 -81.72 -98.38
-122 °  -132 °  1700 -146 °

20 -72.67 -82.21 -95.39 -113.59
-137 °  1640 390 490

300 -77.77 -90.67 -105 02 -124652
-165 °  640 75 32

450 -85.89 -100.98 -116.60 -138.17

1300 -1160 500 1500

060 -93.37 -109.75 -126.60 -149.69470 510 200 900

54 -- 42



TABLE E-3

UI ASYMPTOTIC SOLUTIONS OF Y FOR z = lA
12 0

R =IX R= 2X R 4X R 10X

00 -72.28 db -73. 4 -73.92 -74.28
680 73 76°  780

10" -72.91 -75.33 -80.15 -94.52
640 550 90 1050

200 -74.71 -80.31 -91.02 -110.75
000 0490 30 -161 -116

0r
30 -77.44 -86.49 -100.56 -122.14

260 76°  20 180

450 -82.65 -95.89 -112.38 -136.13

-240 132 -220 ili1

0
60 -88.42 -104.13 -122.57 -148.13

-900 420 -410 -1240

5543



TABLE E-4

UI ASYMPTOTIC SOLUTIOSOF Y FOR z 2
12 0

R 1R 2X R 4X Rl0OX
0

0 -77.24 db -78.67 -79.46 -79.96
7007 800 820

100 -77.52 -79.44 -81.77 -89.55
670 650 370 -1480

200 -78.37 -81.PO -87.38 -103.31
570 31 -790 760

300 -79.73 -84.81 -94.18 -114.68
42 0 -210 112 0 -144 0

00

9 0 -130 0 162 0150

600 -86.17 -97.24 -113.88 -141.23
-350 940 177 153

WA

56 441

......... ... .1



TABLE E-5

UI ASYMPTOTIC SOLUTIONS OF Y FOR z 4A12 0

R =1A R= 2X R =4 R 1O

0

00 -82.10 db -84.01 -85.10 -85.78
680 750 810 840

10 -82.26 -82.26 -85.97 -89.37
670 670 570 490

200 -82.73 -82.73 -88.41 -97.35
610 610 -10 -370

300 -83.gi -83.51 -92.03 -106.24
52 520 -1160 -1490

450 -85.21 -85.21 -98.74 -118.99

320 320 260 1080

600 -87.48 -87.48 -106.08-106

5 0 5 0 117 6-580

57 .
45



TABLE E-6

UI ASYMPTOTIC SOLUTIONS OF Y FOR z = 8x
12 0

R =I R= 2 R= 4 R =1O
0

0
0 -86.70 db -89.18 -90.65 -91.60

660 730 80 850

10 -86.81 -89.38 -91.06 -92.96
640 700 670 140

200 -87.12 -89.97 -92.26 -96.69
610 600 310 1710

300 -87.63 -90.93 -94.18 -101.98
560 430 -28°  -140 °

450 -88.77 -9303 -98.14 -111.31

440 5 156 0 -350

600 -90.35 -95.78 -102.98 -121.14
27 -450 340 -470

58 46



TABLE E-7

COMPARISON OF UI ASYMPTOTIC AND UI MODAL SOLUTIONS

R__1X_ R 2X ___

o 0 0 Modal Asym. Modal Asym

00 -72.54 db -72.28 -73.g4 -73.34

10 -73.12 -79.91 -75.54 -75.33

l 20 -74.78 -74.71 -80.33 -80.31
48 49 3 3

30 -77.34 -77.44 -86.37 -86.49
250 260 -77 760

40 -82.3 -82.65 -95.62 -95.69
45-6 24 0 130 0 132 0

60 -88.05 -88.42 -103.77 -104.13
-910 -900 410 -42~

47 59

S.47



TABLE E-8

COMPARISON OF UI ASYMPTOTIC AND UI MODAL SOLUTIONS

R = 1X R 2X Planar
ro o Modal Asym. Modal Asym. (Exact)

-67.87 db -67.67 -68.69 -68.46 -69.35
05__117_ 114 o _117 _ ii4__114__110o

-72.54 .72.28 -73.64 -73.34 -74.52
1A0 0 0 00

I. 67 68 73 73 7900 °

2X -77.46 -77.24 -78.g8 -78.67 -80.29

680 700 75 76 84°

-82.22 -82.10 -84.3 -84.01 -86.25
660 680 750 750 870

-86.65 -86.7 -89.41 -89.18 -92.25
8X 620 660 720 730 890

60 48

r
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DATA SET F OF MUTUAL ADMITTANCE

(1) The mutual admittance Y between two axial slots on an
12

infinitely long cylinder is calculated from the

*UI asymptotic solution

The parameters are

*Cylinder: R = 1X, 2A, 4A, 102

*Slot F: Axial

a = 0.2A

b = 0.5X

*Center-to-center distance between two slots is (Ro, z)

(2) Y is listed in (db value, phase in degree), where

db value = 20 log 10 (IY12 1 in mho).

(3) Data are presented in

TABLE F-1: z -0, various P and R
o o0

F-2: z 0.5, various o and R0

F-3: z = 2, various o and R

0 0IF-4: Zo 22, various o and R

F-5: zo = 4X, various 0 and R

F-6: z = 8A, various o and R

F-7: Comparison of UI asymptotic and Ul modal solutions

F-8: Comparison of UI asymptotic and UI modal solutions

F-9: Comparison of asvmntotic solutions

Figure F-I: Mutual admittance Y between two axial slots
12

as a function of

F-2: Mutual admittance YI2 between two axial slots

as a function of 0

F-3: Mutual admittance Y12 between two axial slots

as a function of 0"

66
54



TABLE F-I

UI ASYMPTOTIC SOLUTIONS OF YI2 FOR z = 0

R =1 R= 2 R= 4X R =O

-63.59 -67.11 -72.13 -80.11lO °  ..2°  -66 °  178 °  167 °

0 -67.13 -72.57 -78.g3 -88.04
20 -690 1730 -753 -1804

300 -70.46 -76.90 -83.98 -94.11
-1310 44°  26°  -32 °

045 -74.93 -82.36 -90.41 -102.17
45 1300 -1540 -60 820

600 -78.97 -87.25 -96.29 -109.73
280 60 390 -1640

55 67



TABLE F-2

UI ASYMPTOTIC SOLUTIONS OF Y FOR z 0 .5X

12 0

R=1D R 2X R 4A R 1OX

o -70.14 db -70.11 -70.pO -70.89
0250 250 25 26

10 -74.24 -76.61 -77.20 -81.28

20 -76.84 -77.g8 -80.64 -88.34
20 -101 0 133 -102 0-123 0

30 -77.48 -79.63 -84.79 -94.24
30 112 0 10 0 6 0 -41 0

-79.13 -83.71 -90.78 -102.22
45 900 -1790 -190 770

0 81.68 -88.04 -96.49 -109.76
-6 140 -500 1680

68 56



TABLE F-3

UI ASYMPTOTIC SOLUTIONS OF YI2 FOR z = ix

4o R 1X R =2X R= 4 R =1O

0 -86.65 db -86.63 -86.61 -86.60

-173 -172 -172 -172 °

0 --87.35 -87.92 -86.18 -84.30
1720 1340 330 780

200 -88.37 -86.51 -84.78 -89.22
1280 260 _180 -160

300 -88.07 -85. 8 -86.g5 -94.63
700 -81 -51 -660

450 -87.12 -87.09 -91.80 -102.39
-150 1090 -600 600

600 -87.51 -90.13 -97.06 -109.84

0-99 -720 081°  1790

57 69



TABLE F-4

UI ASYMPTOTIC SOLUTIONS OF YI2 FOR zo = 2X

o R =1 R= 2A R= 4 R =10A

00 -99.37 db -99.34 -99.3 -99.33
177 °  -176 °  -176 -176 °

100 -99.72 -100.00 -98.96 -92.20 4
176 °  157°  93 -144

200 -100.48 -99.A9 -94.33 -92.24
1520 85 -67 620

0 -100.83 -97.05 -93.13 -96.09
30 1150 40 1090 -163 0

045 -99.82 -95.40 -95.21 -103.04
4500 00490 -126 150 -7

600 -98.70 -96.10 -99.12 -110.19
-150 890 1610 129 °

70 7o 58

<1 '4



TABLE F-5

UI ASYMPTOTIC SOLUTIONS OF Y FOR z =4A
12 0

R 1X R 2x R 4A R1OX

00 -111.56 db -111.54 -111.53 -111.52
17 18-178 -178

100 -111 678 -111.097 -111.081 -105.041
177 18 132-27

20 -112.38 -112.36 -108.23 -100.03
20164 0126 021 0-350

0 -113.06 -111.16 -104.80 -100.65
30 14 67 0 -104 0 __154___0

0 -1,6 -107.29 -104.94 -111.46
611247 123 0 114 0 -67 0

59 71



TABLE F-6

UI ASYMPTOTIC SOLUTIONS OF Y FOR z = 8A
12 0

R =1 R= 2 R= 4A R =1Oo

00 -123.63 db -123.61 -123.61 -123.60
0 -179 -179 °  -179 °  -179 °

0 -123. 8 -123.92 -12405 -120.63
10 -178 173 155 °  540

200 -124.23 -124.56 -122.90 -113.13
1710 1500 830 1780

30 -124.87 -124.73 -119.69 -110.52159 113 °  20 -1370

450 -125.87 -123.26 -116.53 -111.57
1310 46°  -145 -36°

0°  -126.32 -121.57 -115.88 -115 46
940 210 380 500

72 60



I
TABLE F-7

COMPARISON OF UI ASYMPTOTIC AND UI MODAL SOLUTIONS

R =X R = 2X
0o -

0 Modal Asym. Modal Asym.

0 -87.06 db -86.65 -86.83 -86.630-171 °0 -173 °0 -172 °0 -172 °0

100 -87.69 -87.35 -88.23 -87.92
176 °  1720 139 °  134 °

0 2 --88.91 -88.7 -87.64 -86.p1
139 128 350 26

0 -89.40 -88.87 -87.01 -85.77
85 70 -72°  _81 °

450 -89.19 -87.32 -88.67 -87.30
20 -15 ~ 1190 1090

0 -89.84 -87.72 -91.86 -90.36
60°  830 990 610 -72°

61 73



TABLE F-8

COMPARISON OF UI ASYMPTOTIC AND UI MODAL SOLUTIONS

R =1 R= 2 Plan,-
z0i

0 Modal Asym. Modal Asym. (Exact)

Jk

0.5A -- -70.11- db -70.11 -70.08
250 250 260

-87.0 -86.65 -86.83 -86.63 -86.6
-171 1730 1720 172o 1720

0-99.97 -99.37 -99.61 -99.34 -99.32
0174 o  _177o _176o -176 o  _176 o

-112.43 -111.56 -111.93 -111.54 -111.52
_175 o  _178o _177 o  _178o _178 o

-124.33 -123.63 -124.12 -123.61 -123.60
8174 °  -179 °  _177 °  _179 o  -179"

74 62



TABLE F-9

COMPARISON OF ASYMPTOTIC SOLUTIONS

R =2A R =10A _

0 0 Asm. PINY OSU UI Asym PINY OSU

-99.34 db -99.42 -105.44 -99.33 -99.41 -105.42
00

-1760 -1720 -1720 -1760 -1720 -1720

-100.00 -99.93 -105.37 -92.2 -92.51 -92.53100 i

1570 1640 1520 -1440 -1420 -1430

-99.39 -99.71 -101.89 -92.24 -92.46 -92.45

2A 200
850 980 780 620 640 650

-97.05 -97.85 -98.23 -96,n9 -96.30 -96.30
300

40 170 40 -1630 -1610 -1600

-95.40 -96.16 -96.09 -103.04 -103.25 -103.25
450

-1260 -1150 -1200 -70 -50 -40

-96.10 -96.68 -96.6 -110.19 -110.41 -110.41
600

890 970 960 1290 1310 1310

63 75
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APPENDIX B: COMPUTER PROGRAM LISTING

This appendix contains the program listing of all solutions,

except the exact Hughes modal solution, discussed in the text.

67 79



BSAVABL COYo
:R krAm, C YOI:L ( SNLt TAP i? 6 bl.OUTPUT,,TAPE7"QUTPJTv T'APES;--I; NPUTD

t * iITUL MTTNC~2OF SL1.OTS N A CYLINDER OR PLANE

* ny: S W. LEE
~ * 5. SAFAVI.-NAINI*

Ls * P. 'HANG*
C. 1., LAW

C

C' THI ISA*DFf" ESO F H'PORM O.GMTA
C AHTot., *F SLOT O/2CLINDER OR* PA

C TH URGNLVRINVEAS RYPORTED INI

C TH15IS PO3AM ONTAIN LEi VERSION W TH 8'13RGRAMS LIN 4rh

C 0IITA: OFXSLTS O(PCYIfLA RN A) AN

C COMUTE SY ROIMTETEMS. ~kX

C

C (2)CYL1NDRICAL

C2A) Iii ASYMP lOT [C (CYL [Nil)

CH 2ff Ul EXACT MJD& (PROG1 & PRO02I

C 2CU 0 S AM. S Y MU~RU PTE CO T.E MA* (N IRTNA?

C

a 80

68



C THE INPUT FORMAT IS AS FOLLOW

C

.C --- 1A/13/2Vid.,'2C/2D/2E/F 2A)
C -- AXf AL/CIkCfjMi-tRENfIAL A i6~

C -FREnUENCY t: 6,
C -- SLOT DIMENSION 04d) o G5(

C IF USING APPROXIMATE OR Lii EXACT MODAL JUMP 'TO,
C THE NEXT SECTION
C -ITRTINGRID (IPAPIPB,) *215
C
C IF USING OTHER THAN UlI EXACT MODAL JUMP TO THE NEXT SECTION

C(UI EXACT MODAL IS USING TRAPEZOI'DAL RULE FOR INTEGRaN
C NCYCLE.=NO. OF SUBSECTIONS BETWEEN ANY TWO SUCCEtSSIVE ZEROS~
C OF INTEGRAND
C MMAX IS THE MAXIMUM NO. OF TERMS WHICH HAS BEEN USEP IN
C CALCULATION OF INFINITE SERIES)
C ---NCYCL.EYMMAX # 21I3

'C
C THE NORMALIZATION FACTOR (Yll)
C --NORMALIZATION FACTOR * G1500 1
C i
C INPUT ZO
C --- TOTAL NO, OF ELEMENTS IN ZO (MMAX.=2O) $ 12
C _--ZO(1) # 6t1510
C -'-ZO(2) $G3(
C #- 0 1500)

C IF USING PLANAR (1)l INPUT THE FOLLOWING IF NOT
C JUMP TO THE NEXT SECTION
C -- TOTAL NO. FO ELEMENTS IN YO (MAX#=20) t 12
C --Yo(1) $ 15,0
C ---YO(2) *015.0
C #- * 1500
C
C IF USING CYLINDER *(2)* INPUT THE FOLLOWING;
C --TOTAL. NO, OF' ELEMENTS IN PHI (MAX*=20) # 12
C --PHI(l) # 01500
C ---PHI(2) # 015.(0
C -_ * GlS,()
C -- rOTAL NO, OF ELEMENTS IN RADIUS (MAX#=20) # 12
C --RADIUS(t) # G15.(0
C -- RALIUS(2) 6 1540
C #- 6 500(

CccCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC(Icctc
IMPLICIT COMPLEX (CvHvZ)rREAL(ABpDGvFPY?
REAL. PHI(20).RAIUJLS(20),Z(20)tYP(20)
REAL TN(l1OhTNPI(10)
INTEGER PTNYrOS~isUIyTE5T

81
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A- I ". .- ..'o " ..........,. . , , , -.. . - -. ... q , ", 'n ': ';-:" " "' ' :S ...[...AV.. ALAB.LE C P
LOGICAL tCUMAXIAL
REAL -MAGZ 0
REAL CONFCCONF I CONF2. KOi Z(J
C M(* I v TZ1YT-Z2Ti. vTY2' ' iTHA
COMMON/DAl AI/TN, TNPI ,RHOv CI , C O2., OF2 , CC,,AEN fDEG,
COMNONDA1A4/ACO2, SN2, N2, R2, ACON v, ACON2 ,OO '

C0MMON/DAA2/AO, ) 26O , Y(
cMON/DATA3/KOJ NC YCLE, FHIO YZO ,Y IMi MMAX, A Y'R
DAnTA TN/233 bi y4 . 0 8 7 5 5 .5 2 1 b6 767 i ,7.9 04 17,

$ 02265, 10. 0401.7,-p-1.. *. 085'2, p I 9360, ,,i.i.2, 8,.8'71
)A 17 TNFI ( 01879, 3. 48 20 4. 8201.0 v6.- 163i1. 7 .37O1.

8, 48849 o 9. 5354 ) 10,7 ;6 ,I.,L 475 6 , 38479/DATAi II/O/,[]O!;LJO!,PINY/()/ T'YFE1/iU.)HE':XACTI - . i"
$ I RC:2/.(HC'L INOiI:C.TIA/ I 'ROl/1 0FIPI-NAIR /"i

'YFP[2/1OHAFPRFWXIATi r'V'IF,'3/ 1 OHUI. I:]X[i' .M/,'-'

$ TYP'E4/1ll]: ASYMFTrO/ TYPS/1OIU A3YMPAT/"
'YFE6/jOFIF(PNY A)Yfi/, TYPEY/IOHL1 ( M/) vYM/

CONFI/I1OIAXIAL / ,CCNF2/.0H C[,k(L)MFE.RF/
ATA NA// IPB f /

P:[ = 1AiSAN (J $ E 8) :"
RAD. I./I. 80 $ 2 3 G=+180,/P]:
AC.ON..' : ? =17, /64 $ ,,,n ., .

0 1.' ((, .L ; C 10::= ( 1 + 0 )

WRITE 6 '35 )
READ ( v 9099 PRO

9099 FORMAT (AlC)
..F ( F'R() , EQ, PRO' ) GOTO 8082
IFJ' ( PR : ..~( * * -, r0o2 ) Of,) 0) 8083

W R 111" I. ( 7 8084 )

8083 1P L A N.::2
WR I TE ( 6,66 6)
G 08 093

8082 I PI..AN -I
W R ITIEI(6 ,.77

8093 READ (^ y * HE v TYPE .
READ ( 5 Y 90',9 ) ]CONF
READ ( S e8086) XK
REAl'( 0 8087) AA ,

8087 F '0RMA,1 2G IS' 0
I ( 'TY PI-". 1'(4. I Y:I. 't ) G TO 809/
IF (TYPE. EQ. * Y1l"-2) G''' 8N99
IF ( TYI I, EQ , TYP1'3 ) *$7 0 10 900(
SIF (TY PE.rY E , TYPE4 ) i ) It 809 /
TF ('TY 1"I , EQ + I YPE5 ) (:;OrJ 809 /
IF" ( I'YF'E * Ell. YPE6 ) (307 0 909/
I F ( T Y PE, E Q. TY P E Z ) GO f'(.H "9 7
WR. I.(0778024)
W r.'II'y8 0 e4

9000 READ ( 5 8098 ) NC YCLE Y MMAX
SS, 0 8097

S8097 I'IEA1i: 5,809)' IFY", II 'EB
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b09i? READ(5,8086)Y11 i
DO, 80-92 I11ND

6092 RD(8,E6086)Z(i )

ktAb(t069 )NDPHT

8095 RE ~D(5886FHII

DO 80?4' I=14N1)iR
83094 'REA,(5i8086)RA6IUS(!)

2230 REAb(SvS6915NDY
DO 6089 I=ivNriY

8089 REriD(5,8086)YPMI
8096 IF(CONFiE.MCJNF)GiwO 9092

AXIAL=, FAL.SE.
cum=.,rRUE.
GOTO 9093

9092 AXIAL=, TRUJE.
CLJM=*,FALSE.

9093 W RITE( 6 v5553
WRlTE(6v771 )TYPEvTYFEE

771 FORMATr(///lx,2o(N*,)/x,**IXYu*3XNHETtiOD OF SGL11'(ON~ ~
$ Y4Xv2A10/1Xi**/lXv20('*"))

772 FORMATr(/1XY20(w**)/1Xy"**)
M7 FORMAT,(IX,"*"/1Xt~20(%N*))

WRITE(6r888)XK
888 FOMTlY*pX'RQJN; :# K= "YE14,6)

WRiTrE(6p773)
WRTTE(6,772)
IF(IPLANE0,1)GOTO 113K
WRTTE(6, 999) PRO2

999 FORMA'r(lxy"*'v3Xv*GOME'TRY o 'YAIO))

M1 WIRITE(AP999)PROt
112 WRITE(6,773)

W RTTE (6 p 7 72)
WRITE(6v 111)AAvFB

I I FORMATB1Xv"*"3Xv'SLOT £DIMENSTON :A(ALONQ PHI)= 'PFS*t3,
$ v; B3(ALONS Z)= 'W8.5)
WRITE(6y773)
WRITE(6,?72)
fF (CONlE ,EQ, CONE: [MO~(TO 114
WRITE(6Y333)

333 FORMAr'(1Xp'*'3Xv'SL(Jr OR<1uVATION :CIRCUM'FErENilI )
(30TO 1153

1[4 WRITE(6p444)
444 FORIA(XO**3Xv'SL0T ORTUNIAlITUN :AXIAL.
t15 WRrE(6y773)
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1!~ 7: l

c,-7 '77-7~

G&(OFdQ.YE3GT 775
W ,5 RiTE(6,9)i8 A~P

,"88 1 FRT(X,3X-~iNCYE---zX "Y RID, MHAR-#~:

-OTO7,74

74 wkRrr(-672)
882 W'~M~ LX""3-NRAIZATXON FACTOR Y11= 'F,2)

WRIE (673)
WRIT:.(B8)
8~3 FOJ1'U//1X4$$$$$ DATA ouTPUT $$$$$*//)

84 FORMA~r( /XY'PtIl= *OF7.2 y' <DEC> ZO= "YF-7.3y
$ N RADIUS= "Yt14.5)

L 5 FEORMA(/2XP* Y= iIF9,4v" F~#r7*3)
IF(TYFE.EQ.TYPE3)GDTO 9095
IF(TYPE*Ea.rYPE4).Opf'
I F (TYPE. EQ , 'rYPE5) 1fJF'=2
TI--(TYlPEo EQ.# TYPE6) ItJF=3
If-(TYPt.EQ.lYPE7) 1O14

MF(C(JM)BU3T0 9094

8lAA

COT0 9091

9094 A=AA

IFA=IPAtA

9095 A=AA $ BL=lD $ KO--XK
DO 9096 I=1YNOiR
RH(WrRtAD IUS (l.r
DO 9096 Illyr4I.Z
ZD=Z(II)
DO 9096 11 -I v ,NDPH:[
PfHI=F'Hlf (III)*RADN

I F(C CINF'l1 ELICONF) COTO 9097
CALL FR0(. :'RHO, MAO i P HASIr: f'Fb PHN)
(3010 9096

9097 CALL. 1-ROGi (RHO) MAG P"HASU I1l , iIIN)
9096 WRITL'(6 783) MAG I PHAS'E l i:ID Pt-IN

8081 FORMAr(AlOtA10)
8084 FORMAT ("5Xv N $$$ ERROR PP ~LY9A3E: CHFCK YOUa.R TNfCIJI Af3A' N")
8086 r'ORMAT(G 15.0)
8091 FORMAI 1 2)
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8098 FbRMAT(215) A L LE U cP
9001 (U

IF(,NOT CJM) IcUM."2
IF( .NOT-AXIAL) 'itAXIAL=1

SAVE=A

B SiAVL
AO=A*xK
B0=B*X(
ITEMP=IpB
I PB=IPA
IPA=1TEMp

6 WIDTH1AOJ1rA
WIDTH2=B0/IPB
CI=CEXP(CMFLX(0.EO,..P:/

3 )C.2=CEXP(CMPLX(0,EO,Pl,/
4,))

F2=SrnRT(Px)

Y1=-B0/2--WIDTH2/2.

IF(IF',LAN.EQ,1)8 01 () 7 
IGOTO 8 
47 NDR=1

C ONTINLJE
DO 50 IRAD=1INDR
RHO=XN*RAItJS( MRAP)
DO 60 .)Z=1,NDZ
Zo=Z Uz) *I
IF(IPLANEQ.1) N~IPHT=NIIY
DO 70 Iy=1,NfiPHi
IP(IFLAN.EQ,.1) (3M TO 13Y0=RHO*PH (I Y) *rADN
IF(FHICIy),E(1,OO) Yo=0,ool
Y=Y0,XK
GO TO) 14t 3 Y=YPCIY)f

YO=Y*X(
14 CONTINUF

IF(TrYF'E.EIP.YPE2)GO-ro 17
Y2=Y0-A0/2--WIPTHl/2.
Z2--Z0-B1,-2, -- WIDTH2/2
ZSUJM=O.
DO 80 IY1IP:A
TY1=Yl+wID rH.I *
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D0 90 L=,iiPb
TZIz1 ~ DH~(
'DO 100 M=~ L I FA

Y2,Y -;, fi~rT114*I1

1' -,,, ' 24W I 112 * N
TR( Y2-,'l)**'+ C 2-TL1)*02)

iAtGC2=CO ( TH ETA)A*

ff '0LAN Ef . :I, G O TtO 600
S N"THETIH1A _ A

J. J.0 C NTI I U LE
100) C 0NiTTM (I
510 a)N *.i NUL
E) 0 C01,4 IJ I UE

7,Y2 711* 4 I IH r*iIW I vl H2 *2* (2. A 0 E( AO0

WRJr EI-- (6 084)r H]1 TY ) Z (JZ )YRAE'ILU ( Tr AI

C, 01' ) I:10

19 .FCN:EbOF)OO16
C.'ALL. APRIOXI (A)O lt~0 /0 'Y * IYZY2' )
GOTO to.

:L6 CALL APROX2(AOE40,?0,YOP.,2v2..)
I8 riAG--C;ABS(ZY2)

!:,HASE>::ATAN2 (ATM(d( ZY2) RA.( ') *DE()
ZEXPO]N.CFXP ( CMPL Y, (0.# FO v 5R( Y0**2+Z0**'2)) p
ZPROE'=ZY2*ZEXf'0N
PHN.-ATAN2 (AIMAG (PROPE) vREAL ( ZIROD) )*DEG
r1=20. *ALOG10 (CAPS& (ZY2!/ZYI)
WRirE (6y~783) MAGi PHASE, rw YPINA

70) CONTIN(UE
6 0 CONT IN U E

f"( TPLAN,1:flt1) 00 TO 30
50 CONT INUIE
30 CONTrINUE
78 F'ORtIAf(!X7 Yl2= "vE13*.i4v" <MfJ',EE.2 N<EG SX "IP

j ;NORM IPHAU-m: 'vF7.'KIEO.N
S T- F ORMATU(/ OX, *******~ k*)** )*******IJ ~ ~~.66e) F (RMA T( I. OX, MIUrTUAL ADIMITTANCE OF SLMOl£(N A ?'Li'I~I

7;'7 FORMA T' (lOX N MIMhAL AlIMITTANCE OF SLL)M ON A PLANEi
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B51 L- AV1l t COWK
END
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SUBROUTINE AFROX1(A~vB0vZ~iYOyPfiZY25
IMkLICIT MP LEX (C6H,)vREAL(A-bilFrPY)

RE~AL KA 'Z(
1COMMON Ii'ATAI.ITN'yTNPI v RHO sC1 Y C2 vF2

rHEi HA-=ATAN2 ( ZO, YO)TETi8,9*I10
iF ( rw~tFIAHA=e9,.,c9*PI/ib0.

RHOGRfI/COS0( H~tHA ) **2
7ZGR=0 . s)*:EXP(CMPL(.EO-R))/(240.*PI**2*R)

11:00.1.1'.0.7) GO- 'TO 20
CALL FOCK(KA)

00r' :30
20 tALFO121 (A)
30 Zi.l-.tVI*$(SIN(THETHA)**2+(0,,i.)*COS(2*T'HETHA)/R)

zTr2--.(0 .t, o)*CUF*GcOS (THETHA) **2/r%
Z r3-- 0 , v I*I +/ (SORT(2 t) *RHC*C()S (THETHA)fl*(2 /3.

& *SIN(THETHA)**4*f(JPF

LF T~k~I-A.JU..~60G TO 40

o To tio
40 TM1t=.I
,:0 IM24,.cOS(AO*COS(TI-IErH'IA)/2# )Ml1,'-(AO*CCOS(7THETHA)/PI)**2)

ZY2--S. *A0*T80*(TM.1*TM2/PJT )**2*HP"H.
RE:TURN

SU'PROUJTINE: APRf)X:'(A tO ZO, YOfPI ,ZY2)

XMLT:IrCOMPLEX (C y~ [1Z)F REAL (A--B, v D--GYPF-Y)
RKAL. IM( L0) YTNI (10)

2OMMON/C/V CJVFVPIJF

IF( IH~iTHITHA=89,s9*P.//800
R:=S6RT(0ZO**2 $Y0**2)
IwHoc;:-Rno/t2os ( rHETHA )**
Z I iGR (0. v --I )*CEXP (C MPlX(0 4 FLO v-R) /(240 *PI**2*R)

-!.(KA.LT4,./) 0*O 'TO 20
:UILFOCKMA)

1) 0 C l(. 30)OKI

'I,"-.(0, 1.)*CL)F*SIN(THIETHA)**2/R

I i I (SIN (AO*COS (rHEI HA) /2. )(AO*COS (THETH-A) /2. ) **2
'rM2(COS(E0*6 IN 0 HTHA) 2)(1.-(B0*S IN (THETIA) /P 1)332))**2

Mr-: -8. *A(,*10*Tl* f'l2*HZ/PIl**2
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END EIAALBFO(
SUBDROUTINE FMFIN(XvNyFMiFN

-REAL DUMI.400)viDPMt2(400,).
REAL FJ(400),XBvBSY(40O6),FN(400YN;46
PI=M1592i5 )F(40

10 (F(XILO=A iO(X02)O.,725'4

Xt=X*X4

BSSY2=-2./(PI*X)+2,.*(GAMLOG*(X/*2,-X3/16,+X5/384, )-X/4.+il.25*X3/16.
&-j.33333*X5/768. )/PI
GO TO j

20 CALL EBESY(Xr0,E'SSYlfIER)
CALL. BESY(XvtyBSSY2vIER)

5~ CONTTNUE

DBSSYi.-1338BSY(2)

0J0 I=I4'i

ISSYXIP:SSY(I+i)
IF(ABS(BSSYI1).GE~lsEl0).GO TO 100)
IJ0 TO 80

ICo NMAX=I+l
IF(NMAX.tGE*N) NMAXg:N

CALL rS.JZ(XDPFJNMAX+1l0.Ili007,IERRDUM±,DUM2)
ItFJ I ="-FJ (2)
FM 01~ /(BSSY ( I)**2+FJ)( I.) **2)
IN~ I)=I./(DLBSYl**2+DFJl**2)
DO 200 11,vNI
lF(TGE.NMAX) (1O '10 250
LBSSY=BSSY(l)-I*DSSY(I+J.)/X
DFJ=FJ ( I )I*FJ (I+ I ) /XB

FN( 11.1 )=I ./(DDSSY**2+DFJ**2)
200 CO)NTINUJE
i () CONTINUE

N---NMOX

'4 E N4D
C SUBROUT~INE 'BESY'

PURPO3SE
C COMPUTE THE Y BESSEL FUNCTION FOR A GIVEN ARGUMENT AND ORDER
C
C USAGE
C CALL -llESY(XrNvBYYIER) 89
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BESVVAILBIECopy
c'D _SRIcTO, ~N OF PARAI~R

X -THE AFJ~tJMENT OF THE Y !IESSEL-FUNCOT ION DESIRED
U -THE ORDER OF mi. Y BESSEL FUNtnbN S'~,
tY -1THE -,ESLTANT VES _f VUW&CTOh~

'R,;RtL TANT ER~ROR< CODEWEE
II_~ NO 0 KO
lR = I N ISi NEGATIVE

WFR=2 X (S NEGAfXVE OR ZERO
IER=C3 IlY HAS EXCEEDED MAbNI TUDE. OF 100*7(0

REMA~RKS$
CVERY 83RALL VALUES OF X MAY CAUSE MIE RANG4E (IF THE LltiDrmR
.5. FUNCION' ALaoGTO bE EXCEED)Eb OZR

iC ~ siIPV awurius ND Fl INCTI ON SUBPROL3RAMS rPIJIRED

c RECURRENCE RELATION AN!) POLYNOMIAL APPROXIMATION TECHNIQUE
C AS DE.8CRITPEI BY AJ .H]COCKPLNMILAPPROXIMATICONS"

C~~T TI) ESEL FUNCTIL~ONS 0I:' URI'E R ZERO AN!) ONE AND 'TO RELAThJ:'
EllDI Ni i IA V.T.I..1..9579 f ,86-88y AND 0. N, WATSONY

CA I' REAlISC ON WVir'iEOy OF KDEH5EL FUJNCTIONS', CAMDRIOGE
C UNI VERSi (f-R 19513 P, 62

G

SM.I"NO11iI NL LeE8y ( X ,N, Y, ER )

Jfl(X) 190w v.90 y2 0

P RANCH IF X LESS THAN OR El-lOAI 4

2() [F(X-4*0)40v40v3)

COJMPUTiE YO AND Y I FOR X GREU ER THAN 4

30 1 i1:4.0/X
['2= FIX r
f-'O= ((( ( -. 0000037043*12! * 000() ",i .' )65 -) * (2 .00)0048l761 :P **1

I .100017, 13 ) * U2-. 0o1 /b3062) * r 09C*
OW- C (.0 )000323J 12*T2 - 00001 42078) *1 24 . 0000342468) *1 2

I 000006Y9 791 ) * 124 . 0004564.32.1 ) * I?- .01246694
I"1 x 0000041241 4* j'2- # 00002009."0 ) *l12 f, 0000580759) *1'2

01 0 0 002211203) f 2 .002 9 2182 6 (2 24 3 9 89 42 3
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4T

It +.0001064741)*-T2".0006390400)*T2+.3740084'

C=-7853982
Y0=A*PO*SIN (C) +b*O0*CO (C)
Y1l-A*Pl*bdS(C)+B*01*SIN(C)

4 O 70 LI-1.1

50SUM=oU./FOTLi

60 FL=L
TS=T-SUM
TERM=(TERM*(-X2)/FL**2)*(I.,-A,/(FL.*TS))'J

70 YO=YO+TERM4
TERM = XX*(T-.5)
SLJM=0.
Y1:: TERM 

nDO 80 L=2r16
SUM=SUM+I./FLODA1(L-1)
FL=L
FLI=FL-1.
TS=T-SUfI
TERM=(TErM*(--X2)/(FLI*FL))*((TS-,.5/FL)/(T3+,5/FLI))

80 Y1:=Y1.TERI
P12=.6366198
YO=F12*YO
Y1=-P12/X+rT2*Y1

C
C CHECK IF ONLY YO OR YI IS DIESIRED

90 IF(N--I).l00vl00ol3)

RETURN EITHER YO OR YI AS REQUIREDI
C

i00 IF(N)1109120911()
1() BY=Y t

GO0 TO 170
120 BY-YO

GO TO 170
C
C PERFORM RECURRENCE OPERATIONS TO FIND YN(X)
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BEWAVALABL-COPY
130 YA=YO

YB=Y1
K ,= I

140 *T=FIOAT(2*K)/X

YC=T*YIB--YA
]:F (ABS (YC )-1 • E70 )145,145rl 4 .

t4i IER=3

RETURN
145 I (+.=,L

IrF(K-N)150, L60,150
150 YA=YP{

YB=YC

(30 TO 140
160 BY=YC
170 RETURN
180 IER=l

RE'T URN
190 'IR=2

RETURN
END

C SUB{ROUTINE BSLJZ(X , FJ v NMAX , A ND , IERR r FJAPRX r RR)
C

C: 1I IS 19 ONE OF THREE ROUTI.NESP "BSLJZr "BSL..[Z' ANT BSCJZ",
C BASFD ON ALGORITHM 236 FROM mCMMUNICAT.ONS OF THE AC .0 N.
C AUIJ., L964. THIS ONE EVALIJAIES THE BESSEL. FUNCTIONS OF THE
CQFLRS! I(IND FOR REAL ORDtFRS AN! NON-NEGAFEVE REAL. ARGIUMEN 'S.
C;

C 1IHE FARAMETERS ARE DC SCRL ;i Ii AS FOL.L(WSv WI'TH *(I)" "(0)", AND
C N(I/O)m IND'I.CAI IN, RESPEC r.'EI..Y, THAT A PARAMETER ]'S TO BE OET ON

c cNrRY, WI.L IE: SET BY THE I.ROU1INE, OR BOTH

C W*' ILL PAAMETIRS EXCEPT "ND" r '1ERR" , "NMAX" ARE ***
C *** ,8 NGLF PRECISION REAL NIDMHEP OR ARRAYS,
C

( ) X THE (NON-NEGArIVE) ARGUMENT TO THE BESSEL FUNCTIONS,
C (0) FJ AN ARkAY iN WHICH IHE VALUES OF THE BESSEL FUNCrIONS
C ARE STOREll, AS FOLLOWS: LErI X; .{) mDENOTE THE VALUE
C; OF THE BESSEL FUNCTION OF ORDER B WITH ARGUMENT X.
C '1I.HEN, FOR .I I IO AT.US(NMAX)i'fl
C F J(1) = J(X;A ' ( [-1 )*SGN(NMAX))
C (1) NMAX - RLFI.IL 7U 5 FJ,
C (I) A ..- F:l]i' ro ru'Jn NORMALLY, 0 <= A < 1 BUT THE ALG.R-
C TTHM WORKI!, WITH SOME LOSS OF ACCURACY, FOR A I= 1.
C SEE' THE PROGRAM N ':s BELOW.
G. (1) N,9 -- THIS GIVES THE NUMBER OF ,[U-N1FICANT FIGURES OF
c ACCIIIWA;Y DIESLRED EN FilE FUNCTION VALIJES
; (D) IERR " .1H (Li 1S AN ERROR FL.A.B WHICH FS ,S:T TO 0 IF THE
C 1 NpU' PARAME TERS ARE OKAY, AND TO SOME P0SIIVE
t, VALUC It .JNE OF FHE PARAMErS, IS INVALID, REFER

0l IIE ERROR EXIFS AT THE END OF THE CODE FOR A
TAIL :1D L V or THE VALIIES OF' IVRsjc t o) FJAI'RX A SCR AIH:I ARRAY U.Elil BY VilE ROuJTINE. IT MUS1 IAVE

92 8o
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C A LESTBET AVIABL COPYi
AT LEAST ABS(NMAX)'1 ENTRIES.

G (0) RR ... ANOTHER SCRATCH ARRAY. IT TOO MUST HAVE AT LEAST
ABS(NMAX)+I ENTRIES

C OT'HER ROUTINES CALLED: ( * INDICATES A LOCAL ROUTINE
m c , NBSO1Z .. INVERSE FUNCTION OF X*LOG(X)
C , UNDERZ ... ROUTINE TO CONTROL UNDERFLOW INTERRUPTS ON THE IBM 360.
C MGAMMA -- UAMMA FUNCTION FROM THE IMSL LIBRARY.
C ALOG -- LOGARITHM
C ADS -- ABSOLUTE VALUE
C MOD .... REMAINDER
C AMAXI - MAXIMUM OF 2 REALS
C

C NOTES:
("C THE METHOD OF COMPUTATION IS A VARIANT OF THE BACKWARD
C RECURRENCE ALGORITHM OF J.C.P.MILLER (REFERENCE 1). THE
c PURPORTED ACCURACY IS OBTAINED BY A JUDICIOUS SELECTION
C OF THE INITIAL VALUE NU OF THE RECURSION INDEX (REP--
C RESENTED .IN THE CODE BY THE VARIABLE 'XNU'), TOGETHER
C WITH AT LEAST ONE REPETITION OF THE RECURSION WITH -NU,

C REPLACED BY *NUJ' t1. NEAR A ZERO OF ONE OF THE BESSEL
C FUNCTIONS, THE ACCIRACY OF THAT PARTICULAR BESSEL FUNCTION
C MAY DETERIORA'TE TO LELS THAN 'ND' SIGNIFICANT DIGITS. THE
C ALOORITHM IS MOST EFFICIENT WHEN X IS SMALL OR MODERATELY
G LARGE.
C

C: THE ABOVE PARAGRAPH IS IAKEN FROM GAUTSCI'S PRESENTATION
C OF ALGORITHM 236 IN C.A.C.M. THE SELECTION OF THE INITIAL
C 'NU' IS DONE WIFH THE AID OF THE FUNCTION NBS0Z, ALSO
C BY GAUTSCHI (AND CALLED mT' BY HIM), IN THIS CODE, THE
C FOLLOWING SPECIAL. CASES HAVE BEEN ADDED:
L, A. X=O WHEN NMAX > 0 OR A=(O
A'C B, A=O AND NMAX ( 0
C C. A 1I : THE ALGORITHM WORKS IN THIS CASE, BUT THE
(, INITIAL CHOICE OF 'NU' IS NO LONGER

OPTIMAL, AND SOME ACCURACY IS LOST, SIMPLE
C; TESTS INDICATE THAT ONLY A FEW DECIMAL.
; F'LACES ARE SACRIFICED AT WORST. A LIMIT OF'
C "ABIG' IS PLACED ON A TO AVOID OVERFLOW IN
C THE GAMMA FUNCTION. TO AVOID COMPLICATIONS,
C NMAX IS REQUIRED TO BE NON-NEGATIVE IF A > 1.

a REFERENCES:
C 1. G3AUTSCHTI W. 'RECURSIVE COMPUTATION OF SPECIAL FUNCTIONS',
C UNIVL"RSIIY OF MICHIGAN ENGINEER1NC SUMMER CONFER-

G ENCES, NIMERICAL ANALYSIS, 1963.

SUBROUTINE BSLJZ(X Y FJ , NMAX , A , ND , IERR FJAPRX RR)
REAL NBSOIZ
DIMENSION FJ(i) , FJAPRX(1) , RR(i)
LOGICAL NEVEN , AFLAG
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E~~~7X R fCP

DIATA )NL:/IPTO/ ,tWO/ 2D0/ pHALF/. ',-,'1/
T EN /10 00v SMALL/1D-15/ , C1/.73576110/v
C2/1, 3591r10/ rb/23211/rC/.3610
ZERO/0110/ po5O/ yTO52+5/r

ALEiPi-/3777 0000 0000 00000011/ OR4/ r
C5/2000) 4000 0000) 000(0 00004/

IINITI ALIE 'THE ERROR fPARAMETER YrTURN IJNTERFLOW OFF ,AND) CHECK
TTHE 1PARAMErER8 FOK VALTD[T rY ANTD FOR THESE StECiAL CIsES;

cA. X:m() WiT H NMAX >0 (OR A=:0
A N 1)0 AN; 4M )X .:,0

C *r A)PI: )ILL..rEl:ITFLY AVOICDS TESTING MORE THEN ONE TrHING IN EACH
i.G11 AL "IF" B~ELOW 1BECA11JTSE OF ( . £.M. FORTRAN IIHE.FFI(:CIE"NCY IN TI1L1S

C 11 A>I P1 NMAX M1J51 NOT PE NEGATIVE,

CALL (LJNDr rZ((3F*-F 'rSAVE)
F( (A . L 1'4 ZE~RO) GOTO 999

[f (A . 01 . APIG) 3 OTO 9903
IF(X .1.1 . Z E P0) (7 QTO 997
lF (NMAX , -0)) HCJTO 10

(A L, SMLL) OTO996
IF (A . GE:' ONE ) (3010 994
rr x . lvr .zERO) GOTO 40
IrF*(NiAX O .G 0 ) GOTO 20
T f ( A )* IT. ZERO) GOTO 995

C I F N.",)X 0 O NMAXT TS SET HERE 8O TfIAT ONLY J (XvA) IS CALCIJLATEfl.
I-~2Uii OLO *N TATE M~ r 503 HN CALCULATES THiE RE:MAINING

t: FUqnCT:r'NS B~Y A SIIF'LE RECURRENCE.
( I A4-0 NMAX1T IS SET 1,3 MTHA r (JX ;A-IN)p N:-0p . .. v -NMAX ARE
fCI!. C JLATEiI 'THE CODE' AF R 0 HN REVERSES THE SIGN OF EVERY

C : CHIlER ONE4

WIC F IRI,;T HAND'LE TI'N CAM. X=O,

2KC NIEMP 1 AIIS(NliAX) 1 t.

DO 30 I

1F*0 .1'(). ZERO) F.# ) NE
G( I ) 1.t01)0

q' l g*L.AG (A *EO . ZU.NL) 3*ANII, ( NMAX .1LT. 0)
NMAXT NIIAX
LF(NMAX .L f'6 0) NMAXF 1

1\11EMP .7MAXO (NMAX+ I vI
I.' NO 1'.J AFLAID GJOTO 60
NtV-X1 NMAX
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BEST AVAILABLE COPY
NTEMF: NMAXT + I

60 EPSLON = "EN**C-ND)/2
DO 801 = INTEMP

8 80 FJAPRX(I) = ZERO
CALL MGAMMA(ONE+A r RESULT , IER)
SUM = (X/TWO)**A/RESULT
DI = C3*ND + C4
R = ZERO
IF(NMAXT GT. 0) R = NMAXT * NBSO1Z(HALF*DI/NMAXT)
S C2 * X * NBSOIZ(CI*DI/X)

C THE RECURSION INDEX "NU" IS DELIBERATELY CALCULATED AS A FLOATING
U POINT NUMBER RATHER 'AN AN INTEGER, AND ALL COMPARISONS WITH IT

C ARE DONE AS FLOATING POINT COMPARISONS.

XNU = ONE I AMAXI(RS)
XL.MIT = XNIJ/2
TWOA A f A
XN ZERO
FL ONE

,. tOUTER ITERATION LOOP STARTS HERE.

C THE FOLLOWING LOOP IS DONE ENTIRELY IN FLOATING POINT FOR
C EFFICIENCY.

200 XN XN + ONE
FL FIL. * (XN F A)/(XN F ONE)
TF(XN .Lr, XLIMTT) GOTO 200
OLDFL = FL
OLDXN = XN

"i N = 2*XN
XN =N

NEVEN " ,RUE,
ZEIO
/ENO

. WO/X

C IN THE FOLLOWING LOOP, riE SUCCESSIVE VALUES OF 'R' ARE PARTIAL
C FRACTIONS OF A CONTINUED FRACTIONo

300 DENOM = TEMPI * (A + XN) - R
IF(ABS(DENOM) LE. SMALL) DENOM DENOM . SMALL
R = ONE/DENOM
FLMBDA = ZERO
I'(,NO, NEVEN) GOTO 400
FL = FL * (XN ' TWO)/(XN + TWOA)
FLMBPA = FL * (XN I A)

400 S = R * (FLMBDA f S)
IF(N oLE. NMAXI) RR(N) R

95
83



BEST AVAILABLE COPY
N N- I
XN~ '<N- ONE
N1rVEN = *NOT. NEVLN

lF(N BGE# 1) (,OTO 300
F.J (I. ) '. S M! (( NE + S3

*1F(NMAXT *EQ# 0) GOTO 60()
DO 500) N = 1NMAXT

300 VJ(NF.1) RR(N) * FJ(N)

G' 11"::vi~r Al- ROXIriArIuNS) ARE CHECKED FOR IMPROVEMENT:1
600 i)C00 N 1NIME'

1:F('0ARS (I J (N) -- FJAF1*X (N)) * LE.AS0F N) ESO GOTO 800
110 700 M 1 NTEMPl

100 lVJAP-'RX(M FJ(m)

XULMI I XL.:I M.LT + WU
G 111TO1 200

li ( NMAX . W*0) (1OTO I1000

C lf, NtiAX-%() WE: HAVE I-FINTSHEL OBTAINING J(OX;A) YAND NOW
C, I: TO EkiT TI)FNt ALL THE IlESURED FUNC.TION.

C F Wi:: Clh-'CK FOFO THEC- '.PE CT AL. CASE A():O

I: NOT4 A F 1. A G ) j (JT) 0 8,5
NMAX( I' -NMAX t

,: 0 N; 2 NiAXI 2

El 1 J( 2) TW, O * A * F~J(I .)/X -FJ (2)
[F(0NMAX #EQ. -J. 1 uru 1000

: r! E 1"O~LLOWIN(G CODEi IS A RENDIITION OF THE LOOP
G (10 900 N 2."NMAXT

(" V00 I-J(01) (2/X)*(A-N)*I::J(N) - F.J(N-1)

C, Wl j H OV LR FLO0W or'- IJ1ON * AS '.)ON AS( Y'HF NLJMD'ERI; GET TOO BI10 THEY
u; -"RL llC'04Er' li'UWO (ic' . vowiu or THE MACHINE PASEY SC) AS TO AVO ID

1 08,1 (.1- PRELCISION) AND THIF CALULA I[ON CON TINIUES,. A SEPARATE LOOP
G1. FAIGF ORMS YHE SCML.Xl VALUES0 TD) 11L COR)-%REC r OUT1PUTr VALUES SET J1NG
C TOO 0 0~~i ONE"' *0 PI-11s O-lNtiS -I R' 0 R ~ 11: v.Y

'tit

I I w-W
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BEST AVA LABLE LOPY
XNMI = TWO

DO 880 N 3,NMAXT
FJN = rEMFI * (A - XNM1) * FJNM1 FJNM2

FJNM2 = FJNM1
FAMIl = FJN
FJ(N) = FJN

XNMi = XNM1 + ONE
RR(N) = OVER
IF(ABS(FJN) °LT C5) GOTO 880
OVER OVER + ONE
FJNM1 F JNM]./C'
FJNM2 FJNM2/C5

88:30 CONTINUE
C

[I"(NIAXT ,L". 3) GOTO 1000
OVER = ZERO
SCALE = ONE

DO 900 N - ,-NMAXr
IF(OVER .LTo FOUR) GOTO 890
F,i(N) = SIGN(ALEPHFJ(N))GOTO 900

1390 IIF(RR(N) .G*T OVER) SCALE = SCA..E * C5
FJ(N) FJ(N) * SCALE
OVER RR(N)

900 CONTINUE
GOlo 1000

C ERROR EXIT'S FOLLOW, MEAN]NGS OF THE EXIT VALUES OF IERR" ARE:
0 NO ERROR
.I A <0

' 2 A > ABIG
S 3 X < 0

4 : NMAX < 0 AND 0 < A SMALL.
C5 X-=O? NMAX < Op ANTI A., 0
C 6 NMAX < 0 AND A.>= I

994 IERR [ ERR + 1
995 [ERR I ERR f 1

Yg$6 [ERR IERR + I
99/ fRR IERR + 1
1 998 IERR IERR + I
'9 IERR IERR + 1
L00o CONTINUE
C U CALL UNERZ('S'PSAVE)

P E I'URN
ENDn
REAL. FUNCTION NBSO.[Z(X)

C'*** ***

C 1I-l5 1S A NUCLEUS FOIR MHE. IHREE BESSEL FUNCTION ROUrINES
C "SLJZ" , 'BSLIZ' , BSCJZ' BASED ON ALGORITHM 236 FROM
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IBEST AVAILABLE C OP Y
C 'COMMUJNICATIONS OF 'THE A.C.M" tM

C IT EVALUAIES THE INVERSE FUJNCTION OF X*LOG(X) FOR X I TO AN
-C A~CCURAC'Y OF ABOUT bNE PER CENT.
C. (OR TH-E INTERVAL 0 ,= X <= 10 A FIFTH DEGREE AP"PROXIMATION IS
C UISES,# UOYAINETI BY TRUNCATING AN EXPANSION IN CHEBIYCHEV POLYNOMIALS#

CFOR X 10y~ A DIFFERENT APPROXIMATION IS GIVENY AS CAN BE SEEN#

brlA C /.0000!3?9411)0/ , C2/.-.00l76145D0/
C*l * /02(08645D0/ , 4/- *.I29013DO/

*C5/d303777D0/ vC6/1 10125)DO/
ALP'HA/ , 775ri0/ Y EN/ 01,10/

IF(X *(3, ToN) tio 10 10
((C[I*X 4. C,2)*X I- C3)*X + C4)*X + C5)*X+ C6

( RETUR~N
io TF.MP1 ALOG (X) -ALPHA

1LM2 (AL.PHA--ALOGs(TEM:L) )/(1-fT'EMPI)
N30tl X/U1I+TEMF2)*TEMPI)

8 (AIWLTINK PRO01 (RHO YAMPY ,PHASEY , AtiPYDB, PHASN4M)
PROIGRAM TO COMPUTE THE MUTUAL ADMITTANCE BETWEEN TWO IDENTICAL
coXIAL. SLOTS ON A CYLINDER ( UT MODIAL SOLUTION)
REAL KONzPKTv12yKZKTRO
COMPLEX f1,Yt'PSIEXPvYNI2
REAL. F1(400)p FM(400)PFN(40)v)AIMAGYREALYATAN2
rUMMON/"DAl A3/K() NlCYCLE P PHI(J, ZO rYl 1 , MMAX PAP B

G INP~lJ PARAMETERS:*
C KO.--V NUMBER IN FREE SPACE IN 'TERMS OF 1/INCH
C NCYCLE=NO, OF sTJBLc.,T ION.G) BETWEEN ANY TWO SUCCESSIVE ZEROS OF INTEGRANrI

IN TRAPEZOIDAL RULE. FOR NUMERICAL INTEGRAI ON
C (1*1W. SLOI DIMENliHON B>A <INCH>'

1: RllOJ-RA0IU!3 OF CYLINDER <INCH>
1 HI (h11 ANGTJLAR SFt'ARAfION OF THE SLOTS (CENTER TO CENTER) <RADIAN',

C Ztfr SEPARATION OF THE SLOTS IN Z-DIRECTION -,,INCH:,,
Yt i- NORMALIZA CION FACTfOR

(C MMAX:, MAXIMUM NO. Of T ERMS WHICH HAS BJEEN USED IN CALCULATION OF
INFINIfE SERIES
PT=..314159265

AK'A=NO*(A

C PI~~Hf~~iAN67ULAR WIDTH OF 'THE.. SLOT
PH "~2*ASIN (A,,(2.*RHO))
LCtU. JTArION OF INF iN] lE SERIES
hMP_'t2=MMAX-f-
1.10 :00 M=IvMMAX1t2

11,0141.04*(b) (31) TO 99
(:M)-( CS (Ml*PHIO) *(SIN (M1*PHIA/2, )/(M1*PHIIA/2,) )**2

GO0 TO 100

98 86



BEST AVAILABLEiLOPY
99 Fl(M)=0.5
100 CONTINUE

C INTEGRATION OF PSI(KZ)*Rl(tlKZ)*EXP(-J*KZ*ZO) BETWEEN 0 AND KO0
C DIELTA= NEIGHBOURHOOD OF THE SINGULAR POINT KZ=;KO IN WHICH THE INTEGRAL
C HAS BEEN CALCULATED ANALYTICALLY

DELTAl , E-7*KO
G NSECT1=NO. OF SAMPLES IN THE INTERVAL (0.,KO-DELTA)#

NSECTI=(IFIX( (B+ZO+RHO)*KO/PI)+2)*NCYCLE
DKZ-(KO DLA )/NSECT 1
NSEG T=NSl"C7 1+1

G: ll-FERST INTEGRAL (BETWEEN 0# AND KO0)
DO 200 I~lNSECT
KZ=(I-1)*DKZ
IF(K'Z.Efl,0) K>=0.00001*KO
CIN=1.
IF((I*EQ*1).ORo(I.EQ.NSECT)) CIN=0,o5
Kr=SORT(KO*IKO-KZ*KZ)
TF(ABS(KZ*B/2.,-PI/2.),LE.1,E-8) KZ=1,000001*KZ
PSIEXP=(COS(KZ*B/2. )/( (KZ*B/2.)**2-(PI/2.)**2))**2*CIN*DNZ
&*CEXPU0O.F-I.)*KZ*ZO)

MMAX1 4iMAX
ROKT'=RHO*KT

c; COMPUTATION OF FM(N)=l./(JN(X)**2+YN(X)**2) AND FN(N)=l*/(DJN(X)**2+
C DYN(X)**2) FOR X=RUKT AND N=() TO MO'AXI WHERE MMAXI IS A NUMBER AFTER
C WHICH THE CONTRIBUTIONS OF FM(N) AND FN(N) TO THE INFINITE SUM
C BECOME NEGLIGIBLE, MtiAXI IS A FUNCTION OF THE ARGUMENT X AND IS ALWAYS
C LESS THAN OR EQUAL 'TO MMAX, MMAXIP FM(N) AND FN(N) ARE CALCULATED
C BY SUBROUTINE FMFN(XPMMAXrFMYFN)#

CALL FMFN(ROKTrMMAXi ,FMyFN)
DO 200 M=IPMMAXI

200 I1:Il+FN(M)*PSIEXP*Fl(M)
C COMPUJTArION OF 12 (BETWEEN ZERO AND ETAMAX WHERE ETAMAX IS A NUMBER
t; AFTER WHICH THE INTEGRAND BECOMES VERY SMALL)

12=0.
ETAMAX=14. /(ZO-B)

C THE INTEGRATION IS CARRIED OUT BY TRAPEZOIDAL RULE. AT FIRST THE WHOLE
C RANGE OF INTEGRATION~ (0.iETAMAX) IS DEVIllED INTO TWO SUBINTERVALS
C (0. ,ETAl) AND (ETAIPETAM'AX) v WHERE ET'Al=ETAMAX/2,. THEN THE NUMERICAL
C COMPUTATION OF THE INTEGRAL IS5 PERFORMED IN 'THESE SUBINTERVALS WITH THE
C NO, OF SAMPLES IN THE FIRST SIUBINTERVAL TWO TIMES THAT' IN THE SECOND ONE.

ETA=7./(ZO-.B)
NSECT1=(IFIX(SQRT(1(O*K(J+ETA1**2)*RH(/Pl)+2)*NCYCLE
DETAl=ETAl/NSECTl
IIETA2=2 .*~DETAl
NSEC*T2=TF IX( (ETAMAX-ET'Al.)/DET'A2)+l
NSEcr=NSECT1+NSECr24-2
DO 300 I=1,NSEC:T
[F(IsLE.NSECllf1) GO TO 22~0
E7A=ETA1+( I-NSECT1--2)*DErA2
DETA=IIE7A2
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BESFAVAILABLE c-(Opy
i,0 rO 240

220 ETA=(1-1 )*DETAl
IF(E1*A.E(0.0.) ETA=0.000l/A
DETA=DETA 1

240 U [N=I.

9) CEN=Oi.S
PSEX=(LCOSII(ET*A*B/2. )/( (E.TA*B/2. )**24 (PI/2, )**2) )**2*I1ET*A*C1N
'*EXP(-ETA*ZO)
NT'fSORF1(I(O*KO1 E f**2)
MMAX1=Ml4AX
CAU. !:MFN( RHU*KT, MMAX1vFM, FN)
POI 300) Mtl=MMAXI

t,00 V2. 121,17(M) *PSEX*Fl (M)
Y12=(.tL+-(0,,l.I)2)*A*EuKYO/(PI*KJ*RHO**2)
NORMAL LZAU ON OF: THE F*HWASE OF Yt2
'(Ni2=Yl12*CEXP( (0. ,1,)*(KO*(,)'(RT(ZO*ZO-I(RiIO*PHiIO)**2)))

C COMPIJIATI(N OF' it* AC',TUAL PHASE 'FHASEY' AND NORMALIZED PHASE 'PHASNM'
OF Y12,
1l:H.EY-ATIAN2(AIMAG(Y12)rEAI(Y2))*180,/PI
PtISNMrAAN2(AMA(3(YN12),REAL(YN12))*1oo./PI

CCOMPWrATION OF" IHLE MAGNITUDIE OF 'THE Y12 IN 'TERMS OF <MHO> AND) KLB>.
AMPY=CADS(Y 12)
AMPYti8=Al.CJG1 OIAM!'Y/ABO ( Y11) )*20.
I IPHTK=KO*R()*FPHIO

L Nill

-0101lJ~1Nr PRU62 (RHOr AMPY r HASEY Y AMPY111P P11ASNM)
C PROGRAM FOR (COMPO rJA IION OF' THE MUTUJAL ADMIT TANCE IETWEEN TWo
C IILNT ICAL. CIRCUMFERENTIlAL SLITS ON A CYLINDER(Ul MODAL SOLUTION)

REAL t,tyZ.K I,1 2yKZK1RO
COMP1. i-X I t Y12 rPS 1,1EXf-'YN 12
W A L, f'lt(400) v I'M(400) p1:N (400) PA IMA3PREAL ,ATAN2
COMMON/IA TA3/INOv NCYCLE rPH 10 YZ)r Y1 11 YMMAX r A P1

C WNill, PARAMETERS
7 C RO-IJA~i~NUJMKFJ [N FRlE (PACE tN 'TERMS OF 1/ [NCII

(C R110--RADIJS -if CYL] NIER * NCH.:
C PHIO=ANGJL.AR S[WPRAI I ON OF IHE sL~orS (CEN TER 'TO CENTER) <RADIAN>
C, ZUOz Sk PARATION\ OF 'lE SL-OTS IN Z--DIRECfION ,INCH)
c Y11= NOR6MALIZArION FACTOR
C MMAX= MAXIMUM NO). OF itRh! WICHI HAS BEEN USED IN C.ALCULATION OF
G INF]N11E SHR[ECS
C iqCYCLL--NO. OF i.,USEC I ONI liETWEEN ANY 'fwo SJCCESSIVF. ZEROS Of: INIEURANII
G IN 'TRAPEZOIDAL- RIJU' FOR NOIJLIGAL IN FEHA r ON

FPI-3. 14159265
Y0.1 /120. *,I)
F14. r3 t I 0*KO/ (2, *Fil *2 * 4
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BEST VAILALE COPY
RK=KO*RHO

C PHIP=HALF ANGULAR WIDTH OF THE SLOT
-PHID=ASIN(A/(2.*RHO))

C COMPUTATION OF INFINITE SERIES
MMAX12=MMAX4 I
Do 100 N~1,MMAX12
MI=M-i.

[FHAPS(PHB*M-I2)L~,-)PIIPI*.0

tOO FJ I(M)=COS(M1*PIO)*(-PlI*COS(Ml*PHIB1)/(( (Ml*PHIB1)**2--(P-I/2.)**2
&)))**2*(l./EPM)

c INTEGRATION OF PSI(KZ)*R1(M'YKZ)*EXP(-J*KZ*ZO) BETWEEN 0 AND KO
c DELTA= NEIGHBOURHOOD OF THE SINGULAR POINT NZ=KO IN WHICH THE INTEGRAL

(1 HAS BEEN CALCULATED ANALYTICALLY
DlEL TA=0 .0001*1(0

C DEL TAI= NEIGHBOURHOOD OF THE SINGULAR POINT KZ=KO WHERE THE INTEL.RAND
C VARIES RAPIDLY AND 'NDELTA' SAMPLES HAVE BEFN' USED,

DELTAI=0.0100t
NDEL I'A=10
DKZ2 ( DELTA 1-DELTA) /NY1ELTA

C NSCT(:'i= NO. OF SUBSECTIONS BETWEEN 0 AND KO--DELTAl
NSECT:I=(]F'IX( (B'fZfRHO)*KO/PI)+2)*NCYCLE
DKZt=(i(O-PELTAI )/NSECTl
NSECI'NSEC T1+NDIELTA+2

C T1=FTR'Jr INTEGRAL (BiETWEEN 0. AND NO)

DO0 200 fI1,NSECT
IF([.LENSECT1+1l) GO TO 120
KZ=I(O-DELr Al+( I--NSErT1-2)*DKZ2
DKZ=DKZ2
G0 TO 140

t20 KZ(IA-)*DKZt
IF(KZ.EP.0) NZ=0.00001*KD
IIKZ=DKZ I

140() CN=1,
EF((].E4.1J.)OR(IEO,.NSECI+1),OR.(I.EONSECT1+2).OR.(I.EQ.NSECT)

9) CIN=0.5
KT=SQRT*(KD*KO-KZ*KZ)
PSIEXP=(SIN(t(Z*B/2.)/(KZ*B/2.))**2*CIN*DKZ*CEXP((0.,-l.)*NZ*ZO)
MMAX1I=MAX

C' ROKT=RHf3*KT
C COMPUTATION OF FM(N)=l./(JN(X)**2+YN(X)**2) AND FN(N)=I./(DJN(X)**24

C DYN(X)**2) FOR X=RDKT AND N::0 TO MMAXI WHERE MMAXI IS A NUMBER AFTER
C WHICH THE CONTRIBUTIONS OIF FM(N) AND FN(N) TO THE INFINITE SUM
C BECOME NEGLIGIBLE* MMAXI IS A FUNCTION OF THE ARGUME-NT X AND IS ALWAYS
c LESS THAN OR EOUAL 11O MMAX, MMAXlst FM(N) AND FN(N) ARE CALCULATED
C BY SUPROU71NE FMFN(XpMMAX1,rMfF-N),

CALL FMFN(ROKrMMAXlvf'MrFN)
KZN1'RO= (KZ/ (Kl'*KO*RHO) ) *2
DO 200 M=IPMMAYI
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kiL=(i./T**2)*(FMM)fM1**2*KZKrRO*FN(M))
200 .11 ~t +R I*PS T EXP*F1-(M)

&*(SIN(lO*./2.)/(K(O*EB/2. ))**2/(2*(.!i7216649ALOi(RHO*SClRT

COtMPUTATION OF 12 (B~ETWEEN ZERO AND ErAMAX ;WHERE ETAMAX IS A .NUMBlER
AFTER WHICH THE TNTEGRANI' BECOMES VERY SMALL)

THE 1NtEGR-.cArP)N if) ( )rR1E OUT B~Y TRAPEZOIDAL. RULE, Al FIRST THE WHOLE
CRANGSE OF INTEwrAiON (0#yETAMAX) IS DEQUtED INTO TWOJ SUtiINTrRVALs
G 0 WovlTAI) AND (E'IAIPETAMAX) v WHERE ETAl=ETAMAX/2.. FHEN THE NUMERICAL

c compIJUATTON OF THE .HJTESUfAL 15S PERFORME~D IN THESE SUJBINTERVALS WIIH THE
l NO, or SAMPLE'S IN THI. FIRSI SIIBINTFRVAL TWO TIMES THAI IN THE SECOND ONE.

NSF C 1.1(IF: X(S(4I(T (KO*Kli'ETA1**2)*RHO1/P1 )+2.'*NCYCL.E

1Wk~ 2'2 1ITAl
?..11 "II X( (ErIAMOX-ETAt I 0 IA2) ft1

t!-,CCU * 4\1'01 I I f Nl~iI(' (2+2
D;O 300 P NiI'
.11( ,' iii i 1 30f~ TO 220
ETA~&U~I -~C - *EA

5 ~ ~ ~ G 120 '2~ 01i)[E

Jl-JrrA.LA.0.) ETA,0O001/c
DETA:-,IF T'r1

?40 ( (N-1.

9) C.LN=O.5
rPSEX '(0] NI-I(L.T'A*li/2. )/(ETA*1(/2. ) )**2*EXP( '-ET'A*ZO )*DE IA*CIN
KT-43CQRT (K(J*I(J+E rA**2)
ETK7RO=(ETA/(RHO*KU*H7) )**2
M MA X I=MMAX
CALL F~iflJt(RH(J*KTYM~MAX1 ,FMdiN)
DlO 300 MwAMMAX[

3500 12--12fFt(M)*R1*P8EX
J:2- 12*2.ULY/ '(P t *RHO)

t; NORMALIZATJON OF THE PHASE OF Y1.1

C COMPUITATION OF' rIlE ACIUAL PHASE 'PHASEY' AND' NORMALIZED PHASE 'PFIASNM'

c compUTA r10 OIF 1+1L MAGNITOW 01- 41r1H- Y12 I N TERMS OF *MH0.'- AND :,DB,.
AMPY=CAEBS ( Y 1 2)
(*MF'y tf ALW t 0 (AMPY/Al~( ) Y 11) *20,
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BEST AVAILABLE COPYI
RPHIK=KO*RHO*PHIO
ZDOKD*ZO
PHIOD=PHIO*180./PI
RE'TURN
ENO'

C MHIS SUPROUTINE IS USED To CALCULATE THE FUNCTIONS CVFCUFICVlFCVPFCIJPF
C

SUBROUTINE F0CK(X)
IMPLICIT REAL(A-BsD-HvP--Y)vCOMPLEX (CiZ)
REAL TN(iO)rTNP1(10)
COMIION/CF/CVF.CUFCV 1Fv CVPF, CUPF
tCOMMON/riAr"A1/TIN 1 TNPIRH(PC1rc2,P2,IOPyCcYRA'NYDEG
Fl=SaRT[(X)

tVF:() *

CIIF :oO.
CV1 F=()
t;vrF =0.

PO0 20 N=1,l0
ZT'N=TN(N)*Ci
ZTNPI='TNPI(N)*C1
C3=CEXP(CMPLX(Os0,-X)*ZTNPI)
C4=CEXP(CMPLX(0.0,-X)*ZT'N)
CVF=CVF+fC3/ZTNPI
CUF=CIJF+C4

CVIF=CV1F+fC3 )ZN*4CP

CVPF=(I.0-CMPLX(O.0i2*X)*ZTNPI)*C3/ZTNPI+CVPF

CVIF=2 .*F2*F:S*C2*L'V1F
CVPF=F2*CVPF/ (2 ,*FI*C2)
CUPF=:3.,*F2*F1*C2*CUPF
RETURN
ENTRY FOGKI
XTHREE=X**3
FI=SORI(X)
F3=X THREE
Zl=F2*C2*SURT(F3)
Z2=CIIPLX(0.0,1 .0/60. )4*XTHRtE
Z3=F2*X**4 .5/(C2*64.)
F4=F3**2
CVF=1.0-ZI/4.+7*Z2+7**Z3/8.-4,141E-3*F4
CUF'1 .0-ZL/2.+25,*Z2+5.*Z3-3.7O1E-2*F4
CVIF=1.0+ZL'/2.-35.*72-7.*Z3+4.555E-2*F4

CVPF=.3?.9*Fl*r'2/CC+f21.*Z2/X+63.*Z3/(16.*X)-2.485E-2*F4/X 10

CUPF=, 75*F 1*F2/CC iCMPLX (0 * 0, 25*X**2 ) +22 ,5*Z3/X

91



BEST AVAILAB-1E COPY

C,
I.JflROUTINE 'L.ANAR (IJYMSLM)

IMPL.IC IT C0MF'LL':X ((, Hv Z ) Y RE:AL ( A-El v -G YP-Y )
R EAL. Z(0
COMMON 1:ll:' Z:i TZ2 y'ryTY:*TY2 , R PIHETH4A
COtIMON/DATA2/A v B ZO v YO)

G O (I1 ) 20) , .J
:L0 XM::-:.( (TZ2--V'Z1)/R)**2

XM2=124 ---3 *XM I
X NL.;.: XM2 / R

1-IA;::("EXI:'( CMlLX (0 () E:0 v -R )) *C:MF'LX ( XRI. -XIM ) /(240) *R*PI**2)
FAT:)RCOS(1"'I*'rY I/A) *COS (Pl* ( TY2-YO) /A)

Z( A~. 2 X P ( CM F,.I X ( 0) # E 0, -R)) A~C0J2 +Z A I/R
I-iA::(Q, 0 ,-- **ZA2/ (240 *PI**2)

Fi~~~t)~:C&;(>[ TZ:/I ) OS(P1* ('J72-MZO) /E0

2'UI D : S~ER()t.i t NV '111) USEDJ TO OET TrHE NCYLINDRICAL.0 SOUJION

qIOIUiINE CYL..N1 ( IJYSM

R~EAL. Z'K.)

FCOMMOI- N t. 0~ T ~ v T Y NR F"'ETH0
COMMON/C/ I 'CI VF VF LF

COMMON/.I'i Il /rN 'TNFPI RHO, C, C2 F2, xoPYcCCRADNiN.r EG
COMMON/bATJi?/A vD YZO v YO

CUMMUON/'A M l4/(C(2 P SN2 Y TN2 v~ R2YACONlYACON2,v IFC 10
ZOR(0. r-:1 )*CEXP (CMFLX(0E Y-R))(240.#*R*PI**2)

m "fl. F- A TA 2 ( i ( U r 2-*Trz ) v AD~S ( TY2--T[Y1 I *DEG

IF(ONGLE.lT.89,$99) GO TO 10
'Lt:1
il 'TIH-; p1 *8'? .9/1 GO,

ZW::01/H2EP(CFLX(,EO"'P/4,0))*QRTF1*/2,)/RHO

I . '( R CB * ) I./

t; I' I-A.L ' 0 TO 2
C~ CA'L.. F 0CK K. A
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BEST AVAiLABLEf Copy
30 IF(IT.EP.1) 0O TO 40

ZW=COI*(14/AC02)/R*(CUF-CY1F*SN2)
*40 GO TO (2lv22y23y24)YIOP

21 ZHBI=CMP'LX(1#EO'-1./R)*CVF*
ZHD12=CJF/R**2
ZHD:3=COI/( SO T (2. EO )*RHO)**ACON2
ZI-B4AC02**ACON2*CVFF+SN2*(CUPF/AC02**(1 ./3,))

HP=H*C2+HT*AC2
GO TO 500

2, TM2''H=CO1*(1.-3,*SN21)/

IF-(.rJ.L.2)GOTCO 26
HZ-Z*ACVFl*SAC2O*( '-**CO)/R
60,10 .500

27 HF'HI=ZG*SN( HVF*A S2T2)Z
00 TO 50023IM=O*l-*S2/

24 IF(IJLT42)GOTO 28
HZAZCVF*(AC2CO(2.-3*AC2)PXR1) Rvi/

27 HZ=ZGR* (CVFHZ*HS2ZTM)+W
GOTO 500

28HZA=CVF*(CP*lX(N+(2.-3,*SN2)*MXl/R2 .3*S2/R))

HPC=CO1/(SQRT(. RHOG#*ACO2)**ACON2)

$ =ML(lt1#AC2(196-#3*SN2ACON1AC)R

HZH=ZCR*(HAHBHC)

50 GREEN=HP

FACT=CO(PI*TYIF/A)COSPI(T2-O)
HPF=CIJ.Et2)FATO)RCO(*TZ1/)*COS(INZ2Z)2
ZSUM=ZSU+F/ACTOR*Z(l./REE

50ZREUN=HH

END
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1. INTRODUCTION

This paper contains two results for the mutual admittance Y between
12

two slots on the surface of a large conducting cylinder (including the

conducting plane as a special case). The first and the main result is

that an approximate, closed-form solution of YI2 is derived. This solution

may be considered as a simplified version of the asymptotic solution of Y12

reported in [1], as the two surface integrals over the apertures of the

slots are no longer needed in the present approximate solution. Our

second result concerns the derivation of an exact solution of Y12 ' which is

given in terms of an inverse Fourier transform and an infinite summation of

cylindrical modes. This solution is based on the original expression for

YI12 described by Stewart, Golden, and Pridmore-Brown [2), [3], and is more

suitable for numerical calculation for some cases.

This work is undertaken for the following reasons. The determination

of Y (or its dual problem for Z between two dipoles) is not only a

classical problem in electromagnetics that has attracted wide attention

(1] - [10], but also an integral part in the design of modern conformal

arrays [11] - [15]. In the latter application, Y must be repeatedly

calculated for a large number of times. Thus, a simple closed-form

solution should greatly reduce the computation effort and, furthermore,

provide a better physical insight for the design problem as the "cause"

and "effect" can be readily identified in a closed-form solution.

The organization of this paper is as follows. In Section 2, we first

define Y12' and then give the final form of its approximate solution.

Discussions and numerical results are presented in Section 3. In the
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last two sections (4 and 5), the derivations of both the approximate and

the exact modal solutions of Y12 are given. Fock functions used in the

text are described in the Appendix.

1

117



3

2. APPROXIMATE FORMULA FOR MUTUAL ADMITTANCE

Referring to Figure 1, consider two slots on the surface of an

infinitely long conducting cylinder with radius R. The orientation of

the slots may be either circumferential (Figure lb where a > b, n = 1,2),
n n

or axial (Figure lc where a < b ). The problem is to determine the
n n

mutual admittance between these two slots when kR is large.

First let us define mutual admittance. Throughout this work we

always assume that

(i) the slots are thin, and (2.1a)

(ii) their length is roughly a half-wavelength. (2.1b)

Then the aperture field in each slot can be adequately approximated by a

simple cosine distribution, which is the so-called "one-mode" approximation.

For example, if slot 1 is circumferential (Figure lb), its aperture field

under the "one-mode" approximation is given by

E VIe1 , H I llh I  (2.2a)

where *7t4e - z osiy , h1  x eI  (2.2b)

y . (2.2c)

(VII I) are respectively the modal (voltage, current) of slot 1. The

mutual admittance Y1 2 is defined by

21

i Y12 ff 21 - 1 23

where 121 is the induced current in slot 2 when slot 1 is excited by a

voltage V1 and slot 2 is short-circuited. An alternative expression for Y1 2

is

118
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12 VV12 A2  2 2 (2.4)

where
A2 - aperture of slot 2

H - magnetic field when slot 1 is excited with voltage Vl, and

slot 2 is covered by a perfect conductor

-electric field when slot 2 is excited with voltage V2, and

slot 1 is covered by a perfect conductor.

Because 1 I21h2 and V2 2, it is a simple matter to verify that

(2.3) and (2.4) are equivalent [16].

There is an alternative definition of mutual admittance. Instead

of (2.2), a modal voltage V (with a bar) may be defined through the

epression for the aperture field of slot 1 as follows:

" "vl cos -y (2.5a)

a1

or equivalently

V1 - (z °  dz . (2.5b)

Then a different mutual admittance Y is defined by (2.4) after replacing

(V1,V2) by (V1,V2). It can be easily shown that

l -~ fa 1a2 1/2

12 2 \lb21 Y12 (2.6)

Two remarks are in order: () In the limiting case that b1  and b2  ,

(b ) a/2,Y 2 goes to zero as (Ib2) whereas 1I2 approaches a constant

independent of b and b2. (i) For the special case a a X/2 and
119
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R , it is Y12 ' not Y12' that is identical to the mutual impedance Z2

between two corresponding dipoles calculated by the classical Carter's

method [5], [8], [9]. (i1) When the slots are excited by waveguides
(transmission lines), one often uses Y )2 2 From here on, we will

concentrate on Y instead of Y12 "

For the two slots in Figure 1, the final form of an approximate

solution of Y is as follows (for exp +Jwt time convention):
12

Circumferential slots

: 8 albl~b2)/2
YI12 -- 2(a b1a2b2) S(bI sin 0) S(b2 sin e) C(a1 cos 0) C(a2 cos 0)

(2.7a)

Axial slots

S8 (ba21/2
Y2 2 (a-b- a b S(aI cos 0) S(a2 cos 0) C(b1 sin 0) C(b2 sin 0) g

(2.7b)

The various factors in (2.7) are explained below. S and C are simple

trigonometric functions

S(x) -n (kx/2) C(x) cos (kx/2) (2.8)(kx/2) '1 - (kx/Tr) 2

The (simplified) Green's functions g and gz are given by

G (a) [(l sin2 0 ks s 20i + u( ) 2

+ ju'(&)(/2 kR cos 0) sin 0 ] (2.9a)

Z [((o2 02 2.b
9z=G(slv& co kaJ cos 28) + u(O~ sin2 0](29b

where 2
k Y -Jks

G(s) j ks ' YO =i (2.10)

= (k cos 4 e/2R2)1 /3 s (2.11)

120



S 0 += (2.12)

6 tan ( R O )  (2.13)

The Fock functions u and v are explained in the Appendix. In the limiting

case kR + (slots on a planar surface), (2.9) is further simplified to

become

22

The formula in (2.4) is an approximate solution, valid under the condition

kR >> 1 and ks >> 1 . (2.15)

The numerical accuracy of the formula is discussed in Section 3, and its

derivation in Section 4.
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3. NUMERICAL RESULTS AND DISCUSSION

For the two slots in Figure 1, the final form of the approximate

solution of Y12 is given in (2.,7). Generally speaking, its accuracy is

good only if

(i) the size of the slots is small in terms of wavelength,
and/or

(ii) the separation of the slots is large in terms of wave-
length.

In this section, we will give some numerical examples to illustrate the

quantitative accuracy of (2.7).

(A) Circumferential Slot - (Figures 2 and 3). The size of each slot

is 0.5A x 0.2X, and the cylinder radius is 1X. Y is presented in (dB,
12 i rsne n(B

normalized phase) format, where dB = 20 log10 (,Y,21 in mho) and normalized
phase is equal to Arg(Y1 2 expjks). Three solutions of Y12 are given: the

UI exact modal solution calculated from (5.2), 05. 3) and (5.9); the UI

asymptotic solution reported in Il1; and the approximate solution in (2.7).

We note that all the three solutions are in an excellent agreement.

(B) Percentage Error vs. Slot Position - (Figures 4 and 5). In these

figures, the coordinates of each point determine the center-to-center

distance, in and z directions between two slots. The pairs of numbers in

the parentheses - the percentage error in magnitude and the absolute

error in phase of as calculated by the approximate formula, respectively.

For the circumferential slots (Figure 4), the accuracy is generally very

good. For the axial slots (Figure 5), the approximate formula gives erratic

results (as high as 27 percent error in magnitude) when the two slots are

very closely displaced in the 4-direction. The reason for this inaccuracy

is that the surface field due to a magnetic dipole varies very rapidly as

a function of z when the observation point is close by.
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(C) Accuracy vs. Cylinder Radius (Figure 6). The accuracy of the

approximate formula is not'sensitive to the radius of the cylinder.

(D) Planar Slots "(Tablesl and 2). The mutual admittance Y12 between

two identical slots of dimension (a = 0.69, b = 0.3X) on an infinite

conducting plane is calculated as a function of z and YO (the center-to-

center distance between two slots in z and y directions, see Figure lb).

Y is given in (dB, phase in degrees). In both E-plane and H-plane couplings,

the approximate formula is accurate when the separation is at least two wave-

lengths (2.6"). It should be also remarked that the present slots (0.69X X

0.3X) are relatively large. The accuracy of the approximate formula is better

when the slots are smaller.
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4. DERIVATION OF APPROXIMATE FORMULA

We will now give the derivation of the formula in (2.7a)[that of

(2.7b) is very similar]. Consider a circumferential infinitesimal dipole

located at Q' on the surface of a cylinder (Figure 7) which is described by

the magnetic current density

4..

At an observation point Q on the cylinder, the -component of the H field,

denoted by g, is determined in Eq. (2.16b) of [1], which reads in the

present notation,

g(t,a) G)(v(t)[sin2 a + cos 2a]2 2
(+ )u( )[cos2 a (-[ l + fLt sin2

kdUMIcktj Akt!

+ J(r' kR/cos 2 0 - 2 / 3

2 '42v') sin2 a+ tan a + u'() cos a

(4.2)

where (t,a) are the cylindrical coordinates of Q with respect to the origin

at Q' on a developed cylinder, and

[4 2 1/3
=(k cos 0/2R) t . (4.3)

The formula in (4.2) is mainly based on a classical work of Fock [17], and

K contains a modification that introduces a field dependence on the surface

curvature in the binormal direction of the surface ray (see Section 6 of

(1]). This formula is asymptotically valid for kR - , and may be used to

calculate the field at any point on the cylindrical surface.

124
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Making use of the Green's function in (4.2), we next calculate the surface'

field H due to slot I on a cylinder (Figure 8). The aperture distri-

bution of slot 1 is described in .(2.2a), which may be replaced by an

equivalent magnetic current density (p. 108 of [18))

K= 6(r- R) /? V 1 Cos (ryla 1)  .(4.4)

Then, H at an observation point Q is obtained by superposition, namely,

SH4 C(Q) - 2 V1  cos al y g(t,a) dy dz . (4.5)

1

The expression for calculating the mutual admittance Y between the two

12

slots in Figure 8 is given in (2.4). Note that E2 is described much as

(2.2a) and in (4.5). Then (2.4) becomes

YI dy dz dy2 dz2  Cos y Cos I2 (to)
1 22 a 2Y (4.6)

The distance t in (4.6) is given by

t - [(s cos + Y2 " y)2 + (s sin 0 + - z)]I /2 . (4.7)

If a is large relative to the length of either slot, t may be approximated by

s (4.8a)

Y2 - y  z

-- + sin z2 (4.8b)

In evaluating the magnitude of g in (4.6), we use the approximation in

(4.8a), whereas in evaluating its progressive phase term, we use (4.8b).
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Then the integrals in (4.6) can be explicitly carried out. After a

further approximation by dropping the terms of order (ks)-3 = (kt)- 3 in

(4.2), we obtain the desired solution of Y i n (2.7a).

I

.f 9 12

L

= 126
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5. EXACT MODAL SOLUTION

The admittance Y defined in (2.3) may be calculated exactly by

using cylindrical modes, as has been done by Stewart, Golden and

Pridmore-Brown [2], [3]. Extensive numerical results of Y calculated
12

from the SGP solution are reported in 113], [14]. As will be explained

below, the SGP solution is not suitable for numerical calculations when

the slot separation z0 (Figure la) is large. In this section, we will

derive an alternative modal solution of Y12 which does not have this

difficulty.

Let us first consider the circumferential slots shown in Figure lb.

For the case that a a -a and b1 - b2 - b (identical slots), the

mutual admittance Y is given in Eq. (8) of (3]*, which reads in the
12

present notation,

00 c -J (m~0+kzzo)= 2 dk (m,kz)G(m,k z)e (5.1a)

-CO m=- 00

where 2
ab sin (k zb/2) sin (0a + n/2) sin (m a - 7r/2) 2ab f (ma +

iP(m,k Z) = 2 2- (moa + nt/ 2) (mO -it/2) (5.1b)
8n R (kzb/2) a a 2

da (a/2R)

jk H(2)1(k R) mk ' 2 tH (2)(k R)
G(mkz) ((2)5.1c)

t1 H (k R)R) F 2 (k R)'
m tR m /

The multiplication factor 2 in the definition of b in [3] is a misprint
and should be removed.
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VkT' k if k >kz z
t kt =

k -k ,ifk<kz z

Rewrite Y in terms of its real and imaginary parts:

Y12 =G+jB (5.2)

It can be shown that G is given by

fk Cos MdS0cos kz 0  ,(m,k )R(m,k ) dk (5.3a)
0m--O m 0 z z z(.a

where

2 k ! +2 i
2kk 2 153

z T ktR k 12(k !ktk R 2, (5.3b)

t t m m t R)

22M m(X) = J mX) + Y (X) (3)

N (x) = j' 2 (X) + Y 2 (x) (5.3d)
m m=

= 0

m 0 '(5.3e)

We note that G contains a finite integral and can be evaluated in a straight-

forward manner by standard numerical integration techniques. The imaginary

part of Y is given by

Bf Y 0C 0 cos kz 0  (m,kz) • W(m,kz ) dk (5.4a)
C1 Im=0 m

where the integration contour C is shown in Figure 9 and

128
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k (ii + Ym V)M~) 1 (im ) kkz) if k > k

W(mkz) -- (5.4b)

(1kt jR) mk K ktR

Lk{: IktIR) (ktlkR K, if k I k

The computation of B as given in (5.4a) can be quite laborious because (i) the

integration with respect to kz is of infinite range, and the factor cos k z

is highly oscillatory for large kz0 , (ii) W(m,k ) has nonintegrable singulari-

z

ties of opposite sign on both sides of k = k (iii) W(m,k ) decays slowly

with respect to m and k
z

To circumvent the above difficulties in evaluating B, we adopt a

method introduced by Duncan [19]in the study of cylindrical antenna problems.

Let us rewrite (5.4a)

B-m cos m 0 FiJ f F(mkz) sin kzZ0 dkz + J' F(mkz)eikzZ0 dk]}
0 m L C1  C1  -(5.5)

where

F(m,kz) = [R(m,kz) + jW(m,kz )](m,k ) (5.6)

The imaginary part of the first term inside the bracket of (5.5) is

Im F(mk sin kz dk z R(m,kz)P(m,kz) sin kz dk7)fc 0 •(57

In order to compute the imaginary part of the second term of (5.5), the integra-

tion contour C is deformed into C. (Figure 9) according to the theory of

complex variables. This manipulation leads to

jk z jk z
Im F(m,kz)e z dk Im F(m,kz)e dk (5.8)
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Make the change of variable kz  jn in (5.8). Substitution of the resultant

equation and (5.7) into (5.5) gives I
o- cos m 0 -

B= 0 - R(m,k )O(m,k ) sin k z dk z
m=0 m 10 u ]i}' ( _ (5.9)

j+ .1' R(m,jriiPm,jn)e- nz dn')

Our final expression for Y is given in (5.2), with its real part G in (5.3)

and its imaginary part B in (5.9). Several remarks are in order: (i) Not

only G but also B is determined by R(m,k ), which is much simpler than W(m,k )
z z

defined in (5.4b). (ii) B contains only a finite integral. (iii) The

infinite integral in B, i.e., the second integral in (5.9a), contains an

exponentially decaying factor exp[-z 0 - a)n] in its integrand. The emergence

of the evaluation of B is faster for larger z0. This is in contrast to the

original expression of Y12 given in (5.1). (iv) There is no nonintegrable

singularity in (5.3) or (5.9).

The same method applies to the derivation of an alternative expression

of Y for two identical axial slots (Figure lc with a a a and
'12 to1 2

bi  b 2 b). We give below only the final result:

abY c os m -jk z dki YI2 =  k R2  (m,kz)e-Jzo d

ik R m=O m N (k R)L'O m t
-nz 0  dn

+ j P(mjn)e + (
0 N :2(/ +2

where
esin (.ma) cos (k b/2)

(P(m , k ~)( 4 )( ~ / ) - ( 1 (5.10b)
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In summary, the alternative expression of the exact modal solutions is given

in (5.2), (5.3), and (5.9) for two identical circumferential slots, and in

(5.10) for two identical axial slots.

1

4,4
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APPENDIX

FOCK FUNCTIONS

Ii this appendix we define and list some useful formulas of the functions:.

wl(t), w2(t), v(F.), u(t.), and v 1 ( ). These functions are commonly known as

Fock functions.

(i) Definition: For a complex t and a real ,

w2(t) = dz exp tz - z(A-)

1

i(t) dz exp tz w(t) (A-2)
2 r2

rf 1
• ~ 1 4 1/ /2 1_ I 2(t -ict

v() 1 IT 1/2 w(t- e dt (A-3)

() eJ3/43 / 2 ' w2(t) t

u) e / - e t dt (A-4)
1 w2 (t)

V = eJ 37/4 3/2 1 f t w(tj- t dt (A-5)
r w (t)

where integration contour r (r2) goes from - to 0 along the line

Arg z - -27t/3 (+2n/3) and from 0 to - along the real axis. Because of

different time conventions, w (w2 ) above is equal to w2(w I) defined in [17].
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(ii) Residue series representation: For real positive ,

VW e= (t,)'le -(A-6)
n'1 n

~u() e.'I 4 2 V /2' 'Jt
nl-

Jf4 -12- t

nul

where {t ) and t' } are zeros of w2 (t) and w (t), respectively, and

are tabulated in 117) and [1].

(iii) Small argument asymptotic expansion: For real positive and -" 0,

/ 7/4 3/2 + 1 .3 7"' -iw/4(9/2 4+v(v) - e = 6+ - +e2 e n (A-8l)

u() 1- ' /2 -/ -
e / + 12 ( e-Jl 3.701 10"2 +n

2 (A-92)

V() 1+ -"12 64 e + 4.555 x 10-2 +..
3: 7r/4 0 63 -ji /4 7/2 -

(A-14)

/M e +v- El 2 + Et e3~~~~~~~~ n13/ / 245 rneJ/ /

( ) " 4' 12+ 1" - 2 .22 1 x 1 0 "1 + . .

~(A-iS)

(iv) Ntmerical evaluation: For a > 0 the residue series representation

with the first te n t n ei may be used. For [ ) the small

argument asymptotic expansion with the first five terms may be used. It has

beenl indic:ted in [12] that the smoothest crossover is obtained if 0.6.

In the pr.tiet study) we set 0 0.7, where the difference in the two

rep n.;sentaz i cn.: i.' Ie,;: than 0.|1% In mag,, Ittude and 0.90 in p~ha;u [1 ]. 133
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TABLE 1

MUTUAL ADMITTANCE Y BETWEEN TWO SLOTS
12

ON A PLANE (E-PLANE COUPLING)

zExact Approximate

O.5A-64.57 dB -63.25 dB

-1100 -1080

-69.48 -69.58

780 810

-75.13 -75.68

840 850

-78.58 -79.22

860 870

4A -81.06 -81.72
870 880

8?.-87.05 -87.75

880 890
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TABLE 2

MUTUAL ADMITTANCE Y BETWEEN SLOTS ON

A PLANE (H-PLANE COUPLING)

yExact 1 Approximate

-83.41 dB -85.04 dB

-530 -1800

2A-96.75 -97.09
-1680 -1800

2'1k-104.00 -104.13

-1720 -1800

4A-109.07 -109.13
-1740 -1800

-121.18 -121.17

-1770 -1800
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MUTUAL ADMITTANCE OF SLOTS ON A CONE:
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MUTUAL ADMITTANCE OF SLOTS ON A CONE:
SOLUTION BY RAY TECHNIQUE*

S. W. Lee
Department of Electrical Engineering

University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

ABSTRACT

An approximate asymptotic Green's function for the surface magnetic

field due to a magnetic dipole on a general convex conducting surface is

developed. Based largely on the classical work of V. A. Fock and tile

current GTD recipes, this solution is presented in a form that admits ray

interpretations, and can be simply evaluated. We apply the Green's function

to calculate the mutual admittance between two slots on a cone. The

numerical results are in very good agreement with experiments.

* This work was supported by Naval Air Systems Command under Contract

N00019-77-C-0127,
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1. INTRODUCTION

In the past few years there has been an increasing interest in the

study of conformal arrays, where the radiating elements are arranged on

a curved conducting surface. A crucial as well as challenging problem in

the design of a conformal array is determining the mutual coupling among

elements [11, [2]. The present paper addresses itself to one such problem

when

(i) the conducting surface is an infinite cone;

(ii) the radiating elements are slots with thin width and a length

of about a half wavelength; and

(iii) all the elements are distributed in a region which is away

from the cone tip and whose radii of curvature are large in

terms of wavelength.

Because of assumption (ii), the aperture field of a slot can be well-

approximated by a simple cosine distribution, i.e., the so-called

"one-mode approximation." Then it has been established, e.g., p. 53 of

[3] or p. 8 of [4], that the calculation of the mutual coupling is

reduced to tLtt of a dyadic Green's function due to a magnetic dipole on

the same curved conducting surface where the array is at.

The Green's function of a cone can be calculated in the following

two ways. I',V ,ormal modes involving spherical Bessel functions and

associated Leeundre functions, it can be expressed exactly in terms of a

doubly infinite series [5], [6]. The numerical evaluation of such a

series, however, is quite tedious, especially at high frequencies. Thus,

up to now, no systematic numerical results have been generated from the

series. An alternative way to calculate the Green's function is to employ

the surface rays, which would yield a simple approximate solution valid
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for high frequencies. The general concept of surface rays was introduced

by J. B. Keller more than twenty years ago [7] - [91; however, a uniformly

valid formula for fields on the ray has not been developed until recently.

Among the several comparable formulas [101 - [12], we chose the one

reported in [12] for the present application. The reason for our choice

is that, at least for the case of a cylinder, the formula in [12] gives the

most accurate numerical results [13].

The organization of this paper is as follows. The formula in [12]

for the Green's function applies only to a cylinder. Following the

GTD recipe, we generalize it to an arbitrary convex surface with its final

solution presented in Section 2, and its derivation in Section 6. In

Sections 3 to 5, the Green's function is specialized to a cone and is used

to calculate the mutual admittance between two slots on a cone. A

conclusion is given in Section 7. The two appendices contain (A) formulas

for the Fock functions, and (B) the computer listing for calculating the

mutual admittance on a cone.
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2. SOLUTION OF THE GREEN'S FUNCTION

Consider a perfectly conducting convex surface Z (Fig. 1), whose

radii of curvature at any point are large in terms of wavelength. At a

point Q1,described by position vector r1 on Z, there is a tangential

magnetic dipole source described by a ragnetic current density (for

exp + jut time convention)

K(r)= M(r rI) (2.1)

when M is the magnetic dipole moment and lies in the tangent plane of Z.

The problem is to determine a high-frequency asymptotic solution of H at

4.
a general point Q2 described by position vector r2 on Z. In other words,

the dyadic Green's function for the surface magnetic field for points rI

and r2 is to be found.

Before presenting the solution, let us introduce several definitions

and parameters. According to GTD [8], [9], the dominant high-frequency

contribution to H(r2) is the field on the surface ray from r1 to r2 . The

surface ray is a geodesic of E. Some of its geometrical properties are

described by A1g. 1)

(i) the arc length s which is chosen such that s = 0 at the source

point r1 and s = s at the observation point r2;

(ii) th( tangent, normal, and binormal, denoted by (t n,-n,-n) at

4
r where n = 1,2; and
n

(iii) its two radii of curvature Rt (s), and Rb(s) of Z at point s

in the directions of tangent, and binormal, respectively.

(On a general convex surface, both radii are nonnegative.)

From the above parameters, we may calculate the following quantities

that are needed for the solution of the Green's function:
153
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(i) The large parameter in our asymptotic expansion of the Green's

function is

m(s) = kR(_1/ , (2.2)

which is a function of position along the ray from r to r2.
1 2*

(ii) A distance parameter from r1 to r2 is defined by

r

4.f k d; (2.3)r2m2(s)

For the special case when R is not a function of s (constant ray curvature),
t

is reduced to (ks/2m2), a well-known parameter introduced first by

Fock [14].

(iii) The ray curvatures at the source and observation points enter in

a parameter defined by

1/2
ks

T 2 m(0) m(s) (2.4)

which is positive real for a convex surface, and is reduced to unity for

the special case of a constant ray curvature.

(iv) Consider a small pencil of surface rays originating from r

and propagating toward r2 (Fig. 1). The angle extended by the pencil at

rI is d l, and that at r2 is d p2. The divergence factor DF of the pencil

is defined by

/sd 1 \1/2
DF = I- (2.5)

-4

where p is the caustic distance of the wavefront at r2 and is always

positive. For example, if E is a sphere and r is the north pole, DF at

154



point r2  (r,O, ) is

DF In~ l/

which varies from one at the north pole (8 0) to infinity at the south

pole (0 = r) as r 2 moves along a great circle.

(v) The "mean"1 radii of curvature between rand r2 are defined by

R = [R (0) R (]l)2 (2.6a)
t t t

Rb = ,(O Rb~ 1 2  (2.6b)

Throughout this work, we always assume that E is a smooth surface with a

slowly varying curvature. Then (R t Rb) represents a sort of average

value of radii of curvature along the ray.

Return to the electromagnetic problem in Fig. 1. We assume that

rn(s) is large and is slowly varying for all s in the range 0 < s < s.

Then an approximate asymptotic solution for the surface magnetic field at

rdue to the dipole source in (2.1) is given by

H(r 2  M (b'b,1b + t'tHt)(DF) (2.7)

H G(s)/'7  - TV(&) - 3 -'tu(O + j(2KR )2/3
b \ks ksj t

3
[Tv'(M + (R /K I) 't b

Ht G(S s).)VW~ + T k)tu(C) + J(rkR ~ I2/ tUI(U

k2 Y -jks -

G(S) 2 T.2 j ks ' '=(2OTi
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The Fock functions u and v and their derivatives u' and v' are described in

Appendix A. Several remarks about the solution in (2.7) are in order.

(i) It is derived in an approximate manner from the classical work of

Fock [14] and the recipe of GTD [8], [9], as detailed in Section 6. This

solution is certainly not valid when the curvature of the surface E is

large or rapidly varying. (ii) For the special case that F is a planar

surfare (Rt = Rb o), (2.7) recovers the known exact solution, namely,

r [l~2
Hb= G(s)L - k- - (2.8a)

Ht = (s)(J)(- (2.8b)

DF . (2.8c) I

~4.(iii) The solution is valid for any combination of rI and r2. In the

penumbra region (r2 is close to rI and << 1), (2.7) is nearly the planar

solution in (2.8). In the deep shadow (< << 1), the residue series

representation of the Foc functions in Appendix A may be used, and (2.7)

is identified as the creeping-wave contribution. (iv) When E is a

cylindrical surface, the formula (2.7) has been used to calculate the

mutual admittance between two slots on E. It has been shown [121, [13]

that the numerical results are in excellent agreement with a known exact

solution [15] - [17]. (v) Except for the very simple surfaces such as a

cylinder, cone, or sphere, no explicit parametric equations can be

found for the geodesics. Thus, for a general surface, one may have to

rely on numerical techniques for determining the geodesics and the

divergent factor, as has been done in [18].
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3. GREEN'S FUNCTION OF A CONE

Let us apply the formula (2.7) to the field on an infinite cone,

described by the equations (Fig. 2a)

x r sin 0 cos 4 , y = r sin 00 sin ¢ , z = r cos 00 (3.1)

where 6 is the half cone angle (0 ' 0 < ff/2). Since the cone is a
0

developable surface, the rays (geodesics) on a developed cone (Fig. 2b)

are straight lines. Due to the source at r1 = (rl,0 0, 1 ), the main con-

tribution of the field at r2 (r2,00,02) coines from the shortest ray

described by

r sin Q r sin S2 (3.2)
1 2 2

As the ray propagates away from the source point rl, it reaches the highest

altitude at M where 0 ri/2. After M, the ray travels downward away from

the cone tip. The various parameters defined in Section 2 can be simply

calculated from the cone geometry [6], [19], and expressed in terms of

coordinates (r,4l) and (r,2). The arclength is

11 202

s= 2 + r2 - 2rr 2 cos [(pI- 2) sin 00 ,Y/2 (3.3)

The angle Q at r I is

QI sin-l's sin - sin 0 (3.4)

We choose lp|l < n/2 if r 2 2+ r I and loll > n/2 if otherwise. The

other parameters are
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S r tan + 4 -_i ) sin _0 (3.5)

Rt tan O0 F - tan O0
0 - 0t sin S1 sin P2 Rb = cos fi cos f (3.6)

1 2 1 2

= krI sin Q sin 00) I 2 - .s o o  (3.7)

1/2 2 1-/36 Co )1/3t = (ks/ )/ 2k rlr2) (sin 2 sin f4 cot (3.8)

DF = . (3.9)
Ah

When the above parameters in (3.3) through (3.9) are substituted into (2.7),

we obtain an approximate solutio, for the surface field on a cone due to

a direct surface ray contribution. Let us consider a special observation

point r2 such that

ks 1 , s1 and Q2 are not close to 7/2 . (3.10)
1 2

Then the two components of the field in ,2.7) are reduced to, after making

used of the residue series renreseatations for the Fock functions

(Appendix A) and keeping oily the leading terms,

21/
k (sin S1 sin .1 cot 601/3 . "1

2k 1/2 exp 0.88- + 0.51 + ks
1528kr~r 2)1(k~.-) 1(.l

Ht % 01(ks) -3 2 (3.11b)

which agrees with the rigorous asymptotic solution given in Eqs. (50) and

(53) of [6]. (In making the comparison, note the corresponding notations

used in [61 and here: -i j, 0 - -) s, r> -* r I  r, - r2

6s -> n/2 - nd -1 -  t [.) We emphasize that the result in (3.11) or

that in [61 is valid only under the conditions in (3.10). For an

arbitrarily located observation point, (2.7) should be used.
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Two final remarks about the formula in (2.7) are in order. (i) For

a given source and observation point, there are infinitely many rays

(geodesics) passing through them. The contribution from each ray may be

calculated from (2.7), and the final field solution is the superposition

of all ray contributions. In most practical problems (all the numerical

computations presented in this paper), only the ray with the shortest

arclength gives the significant contribution to the field solution,

whereas all other rays may be ignored. (ii) Depending on the polarization

and the distances of the source and observation points from the cone tip,

there may be another signifizant contribution to the field from the

diffraction at the tip. In such a case, the total field at any point

contains two dominant contributions: one from the direct ray according

to formula (2.7), and one from the tip-diffracted ray. More about the

latter will be given in Section 4.
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4. MUTUAL ADMITTANCE ON A CONE

On the surface of a cone, let us consider two arbitrarily oriented

slots. Under the assumption that the dimensions of the slots are

relatively small compared with the radii of curvature of the cone surface,

the shapes of slots are taken to be rectangular on a developed cone.

Note that, depending on the exact manner in which the feeding waveguide

is fitted into the cone surface, the shape of a slot mapped on a developed

cone may be quite irregular. Our assumption of rectangular shapes

represents a good approximation for practical cases; at the same time,

it simplifies the subsequent calculations.

Referring to Fig. 3, we describe the dimensions and the positions

of the two slots by

(a nbn) and [cn,(n - ) 1n, n 1,2

Thus, the radial separation of the two slots is (c2 - c) and the angular

separation is The angle w measures the deviation of the longitudinal

direction of slot n from the radial direction of the cone. If a = 0,
n

slot n is radial; if w = n/2, slot n is circumferential. The mutual
n

admittance Y between the two slots is defined as follows. Throughout

this work we always assume that

(i) the slots are thin, and (4.1a)

(ii) their length is roughly a half-wavelength. (4.1b)
k

Then the aperture field in each slot can be adequately approximated by a

simple cosine distribution, which is the so-called "one-mode" approximation.

The aperture field of slot I under the "one-mode" approximation is given by

E V e , H= i h (4.2a)
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where

eI = I Cos lYl ' i = xxel (4. 2b)

Here (yl,zl) are the local rectangular coordinates, with the origin at the

center of slot 1 and yl-axis parallel to the longer dimension of the slot.

(VII I ) are respectively the modal (voltage, current) of slot 1. The

mutual admittance Y12 is defined by

21Y (4.3)
12 ~1 V21

where I is the induced current in slot 2 when slot I is excited by a21

voltage V1 and slot 2 is short-circuited. An alternative expression for

Y is
12

iIf d l t? * '~~ d dzH 12*d H s V H CE2  2 H 1 2 2 z2 VV 2  A 2 21 2 VV 2
(4.4)

wheie

A2  aperture of slot 2,

H1 - magnetic field when slot 1 is excited with voltage V1 , and

slot 2 is covered by a perfect conductor,

E2 = el-ctric field when slot 2 is excited with voltage V2. and

siot 1 is covered by a perfect conductor.

Because H, = 12 1h2 and 2 = V2e2  it is a simple matter to verify that

(4.3) and (4.4) are equivalent.

At high frequencies, HI in (4.4) has two dominant contributions:

one from the direct rays going from skot 1 to slot 2, and the other from

the rays diffracted at the tip of the cone, namely,
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4- +.d +t
H1  H I + H . (4.5)

Accordingly, Y12 also has two parts

d tY12 '  12 +  12 "(.)

d
Let us concentrate on Y first. Making use of the Green's function in (2.7)Let s cocenrateon 12

and the aperture distribution in (4.2), d may be explicitly written as
12

a/2 b/2 a 2/2 b/2
2_fIf_1_2f

2k / dy1  dz1  dy 2
12 1/d11

(albab) _a /2 d -b/ 2  l 2 -b2a/2
1 12 2 1 122

x os yi os y2 Y2  g(Ylzl;y2 z2) (4.7a)

where
g(ylzl;y ) = cos W cos w + H sln o sinw . (4.7b)

1 92 b 3 4 t 3 4

The Green's function components (1 ,H ) are given in (2.7), and angles
bt

S(W3, 4 ) are shown in Fig. 3. In evaluating the integrals In (4.7a), for

two given points (yl,zl) and (y2,z2), we must calculate some geometrical

parameters appearing in HIb and H . Those calculations lead to the

following results

-[2 22 1/2= n - 2on " n cos -w n+4

Co2c (4.8a)n n +n 4n n n n ]4
0)I -I! -2 + (4.8b)

n (sin 0 - sin yn + z 2 r1  sin (w - n+48b)

W n+4 = tan -  (zn/Yn) (4.8c)

nQ + (n/2) iln 0 + (n - 1) sin 00 (4.8d)

where n = I and 2. We evaluate the integrals in (4.7a) numerically with the

aid of a computer.
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Next let us considerYt the part of mutual admittance due to the

rays diffracted at the cone tip. For the special case of circumferential

slots, an approximate expression of Y is given in [16], which reads

12

1 T, if wi ?t /2 (4.9a)Y12 2

where

(a a b2)I/
2  (tan 00)1/2 sin (kb/2) sin (kb2 /2)

0 307 4cc sin 2 I (kb1 /2)(kb2/2)10 Cl2 sn00

exp j(- kc I - kc 2 1 . (4.9b)

Here a0 is the zeroth-order tip diffraction coefficiant and is a function

of the half cone angle 00. A numerical table of o0 for several typical

values of 00 is given in [16]. We have fitted those values by a simple

expression, viz.,

G0 A exp JB , (4.10)

where

A = 1.305701 - 1.755 + 2.77200- 1.45902
0 0 0

B = 2.7195 + 1.46080 - 1.12950 + 0.656603
0 0 0

Both 0 and B are in radians.

As may be seen from Fig. 4, the numerical values of 00 calculated from

(4.10) are in excellent agreement with those tabulated in [16). For

the special case of axial slots, Y 2 according to [16] is approximatey

Y2 0 if 2 0 (4.11)

In the present paper, we are interested in the general case that the two

slots have arbitrary orientations. Before a more exact solution can be
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found, we will use the following formula

t T sin w sin 2 (4.12)
12 1 2 (.2

which matches the two extreme cases in (4.9) and (4.11), and interpolates

the in-between cases by regarding each slot as a thin magnetic dipole.

16
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5. NUMERICAL RESULTS OF MUTUAL ADMITTANCE

d

The final solutions for Y12 (total mutual admittance) and Y12

(partial mutual admittance) are given in (4.6), (4.7), (4.12), and (4.9b).

For a given geometry of the slots and cone, tihe two surface integrals in

(4.7a) are evaluated numerically by choosing an integration grid

roughly equal to O.05X x O.05A. Thus, for two typical 0.5X x 0.2A slots,

the integrals are replaced by a summation of 1600 terms. Fortunately,

the integrand is simple enough that each Y calculation takes about one
12

second on the CDC Cyber 170 Series Computer Systems. We have analyzed a

large number of cases for YI2 " Typical results are summarized belo,.

Unless specified otherwise, all numerical computations are based on

two identical slots with

slot length 0.5A , width = 0.2A , (5.1)

The other parameters are the half cone angle 00, the sJot orientations

(Wi,2 ), the distances from slot centers to the cone tip (ci,c 2), and

the slot angular separation 00 = 02 - l (Fig. 3).

(A) "Equivalent" cylinder. It has been conjectured in [16] that,

in calculating Yd (the contribution from the direct rays) approximately,in caculaing 12

the cone may be replaced by an "equivalent" cylinder with parameters

(Fig. 5)

1z0 =ci - c2 ' = 0 R = (c1 + c2 ) sin 00 . (5.2)

This conjecture can be now quantitatively checked out. In Table I we

d
compare Y on a cone with 0 = 150 or 30' calculated from (4.7), and

12 0

Y on a cylinder calculated by a similar GTD solution reported irk [12].
12

All values of YI (or YI2 ) are listed in (DB = 20 log10  , phase in

degree) format. For the cone with the smaller angle (60 = 150), the
165



16

d
"equivalent" cylinder method gives a good approximation for Y For the

12'

cases listed in Table I, the magnitude error of Y is within 0.5 dB
12

(6 percent) and phase error within 150. For the cone with the larger angle

(e0 = 30*), however, the "equivalent" cylinder method is not very accurate

with magnitude, and phase errors as large as 2.5 dB (33 percent), and 560,

respectively.

(B) Comparison with experiments. A set of experimental data on the

mutual coupling between two X-band open-ended waveguides (0.9" x 0.4")

on a cone was reported in [16]. As a function of frequency, measurements

were done on the coupling coefficient S12, which is related to Y12 through

the relation

-Y Yl11

- g)2 2 (5.3)
S12 (Y + _Y -) Y2

-1 2 2 1/2
Here Y. (120)-[k - (V/a) I is the admittance of the TE10 node in

the feed waveguide. Y is the self-admittance of a slot on tile cone.

In the present calculations, we use, instead, the Y on an "equivalent"

cylinder which is calculated by the exact modal solution described in [16]

(for example, Y11 /Yg = 0.8178 + jO.3886 at 8.5 GHz, and 0.8591 + j0.3828

at 9 CHz). Since Y is least sensitive to the geometry, the approximation

of a cone by a cylinder should not introduce any significant error in S12.

In Figs. 6 and 7, three sets of data are presented: (i) the experimental

data; (ii) the theoretical results from the present analysis in which the

calculation of Yd2 is based on a cone, e.g., Equation (4.7); (iii) the
12

theoretical results from [161 in which Y is calculated from the exact

modal solution of an "equivalent" cvlinder. Several observations can be

made. (a) Both theoretical results are in good agreement with the
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experimental data (with the present result being slightly better). As

explained in (A), the "equivalent" cylinder method works because the cone

angles (6 nu 100) are small. (b) The peaks and valleys are caused by the

d t
interference between Y and Y which are of comparable magnitudes due

12 12'

to the large angular separations (60.8' and 800). (c) There exists a

sligbt shift in frequency (Af/f 3 percent) between the theoretical and

experimental valleys in Fig. 6. We speculate that this may be due to a

t
slight phase inaccuracy in Y[2. As a final remark, it has been found

experimentally (private communication from G. E. Stewart and K. E. Golden

t
of Aerospace Corporation) that the Y contribution is sensitive to the

12

exact shape of the cone tip. When the tip is not extremely sharp, the

peaks and valleys in Figs. 6 and 7 become much less predominant.

(C) Mutual admittances of circumferential slots. In Figs. 8 to 10,

Y and Y for two circumferential slots are displayed as functions of
12 12

angular separation %0 and the radial separation (c1 - c2 ). We note that

t
the effect of Y can modify the curves of Y in several different ways.

When the slots are at the same latitude (Fig. 8), the direct coupling is

weak. Thus, Lip contribution is noticeable even at a small angular

separation. As the radial separation is increased (Fig. 9), the tip

contribution is almost negligible for < 65'. When the two slots are

widely separat 'n the radial direction with one slot near the tip

(Fig. 10), the tip contribution gets stronger, and the direct contribution

becomes insensitive to @0 Hence, the oscillation on the Y curve has

a much larger period. In fact, there is only a half "cycle" in the range

0 < < 90', and Y appears to be shifted from Yd by a fixed amount.

712
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(D) Effect of slot orientation on mutual admittance. Consider two

slots separated by I A along the radial direction. The magnitude of Y

as functions of the slot orientation angles wi and i s plotted in

Fig. 11. As expected, the maximum value (-73 dB) occurs when both slots

are circumferential (w, W 900). This value is above 14 dB higher than

that when both slots are radial (wi 2 0). The minimum value (-113 dB)

of Y occurs when the top slot is radial and the bottom one is
12

circumferential. This result confirms a common belief that the mutual

coupling between two orthogonal slots is generally negligible.

1
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6. DERIVATION OF THE GREEN'S FUNCTION

We will now describe briefly the derivation for the Green's function

for the general convex surface given in (2.7).

Our starting point is the corresponding Green's function for a cylinder.

For the latter problem, several versions of the asymptotic solutions

1101 - [12) exist. All the versions are of similar nature, and contain

some approximaLions that have not yet been fully justified. For the

cylinder problem, both [11] and [12] give excellent numerical results

(with [121 being slightly better as demonstrated in (13]). We quote

below the Green's function for a cylinder reported in [12], which again

can be written in the form of (2.7) with DF = 1 and

H G(s) - )- u(. ) + J(V2 kRt)2/3

[v'( ) + (Rt/Rb) u'(E)]) (6.1a)

* t = G(s) ([ ) + - u(4) + j(/2 kRt ) u'(] (6.1b)

where

Rt = R/cos
2 0 , Rb - R/3in2 0

4 2 21/3
= ks(cos 6/2k R2)

R = radius of cylinder

8 = angle between the ray and the 0-direction.

Since 0 is a constant along a ray (geodesic), so are the three parameters

Rt, Rb, and F appearing in (6.1). The formula (6.1) is basically derived

from Fock's classical solution for vector potentials of a sphere 114],

but contains a modification, namely, the last term in (6.1a)

G(s) j(72 kR) -2/3(Rt/R) u'(C) (6.2)

was added to the Fock's solution in an arbitrary manner. Note that this 169
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additional term introduces a very small contribution for a sphere, or for

a cylinder as long as 6 is not close to n/2. For 0 = w/2 on

a cylinder, Hb in (6.1a) becomes (see Eq. (2.10) of [12]) "

H [Hb + k2Ye-j3u/4 1 e-jks (
b b pl 8 /2i kR (6.3)

Here [Hbp1 is the corresponding solution on an infinite plane and it

decays as (ks) 1 .or large ks. The second term in (6.3) comes from the

additional term in (6.2), and is the dominant contribution at large ks

-1/2because it decays as (ks) -  . Recently, J. Boersma (private communication)

has shown that (6.3) is in exact agreement with a rigorous asymptotic

solution for the cylinder. Thus, the additional term in (6.3) is

justified fcr 6 n/2 where its contribution is most significant.

Now, let us generalize (6.1) to a general convex surface sketched

in Fig. 1 following the GTD recipe [8], [9), [18]: (i) The divergence

factor in (2.5) is introduced from the consideration of energy conservation.

(ii) The generalized & in (2.3) and T in (2.4) are based on the rigorous

solutions of two-dimensional canonical problems. The only remaining

problem is the generalization of R and Rb in (6.1). We note that the

above GTD recipe is valid only if Rt and Rb are slowly varying along a ray.

Thus, any sort of average values of Rt and Rb should give approximately

the same result. We choose the geometrical mean in (2.6) for its

simplicity and symmetry between the source and observation points. From

these considerations, we obtain the generalized solution (2.7) from (6.1).

170
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TABLE I.

"12 ON CONE AND Y 2 ON CYLINDER

Cone CyidrCone
z 0 =150 yliner 0 300

00 0 0

-91.35dB -91.47 -90.99

300 0 1550 1530 1600

60 0-110.97 -111.28 -108.78
6001160 1010 1510

- 733 736 73~.49

730 730 740

O 4- 83.89 -84.30 -84.06

770 750 750

3Q 1- 86.52 -86.59 -86.60

- 740 -760 -70

3Q0 4 - 86.95 -87.14 -86.83

240 200 350

601-104.64 -104.17 -106.28

-35* -420 -130

6004 -94.41 -94.64 -94.12

-1180 -1330 -770

The parameters are wl w 900, R =2X, a 0.5X, and b O .2A.

V2
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AI
d*24

II

Fig. 1. A surface ray pencil originating from the magnetic dipole source
a t Q 1  I he central ray of rho pencilI passes through the observa-
tion point Q 2  The angle extended by the pen ii is d I at Qand

at 9)at
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0(a) 3-D Cone -

z[(b) Developed Cone

r

L2

Fig. 2. A surface ray from source point to observation point 2on a__
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Fig. 5. To calculate Y '1 d of a cone approxi atelv,,, the cone may be locally
replaced by an 12jequivalent" cylinder.
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Fig. It. Mutial admittance Y 2between two arbitrarily oriented slots on
a rone.
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APPENDIX A

FOCK FUNCTIONS

In this appendix we define and list some useful formulas of the functions

w (t), w2 (t), v( ), u(4), and vl( ). These functions are commonly known as

Fock functions.

(i) Definition: For a complex t and a real F,

wl(t) - r dz exp (tz 3 (A-1)

w2 (t) dz exp tz- z3  W(t) (A-2)

2 1J/ / 1r 3 12t, -jt

v() I jir/4 1/2 1 -wt ) e dt A-3)

u( =eJ3/4 31  p I w (t) -~

32 w2(t) e dt (A-4)

P r w2(t)
vl J37r/4 3 / 2 I 1 2 -J t

1e f 2t) e dt (A-4)

v~ ~~~; M e w2 (t Jtd A5

where integration contour rl(r 2) goes from to 0 along the line

Arg z -2n/3 (+2r/3) and from 0 to along the real axts. Because of

different time conventions, *)(w 2) above is equal to w2 (wl) defined in [14].
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(ii) Residue series representation: For real positive C,

- e-j%/41- C1/2  -t n)'e-

V1() ejT2/ ff 1  (t'Ji lte (A-6)

n1l

u(, j /42r ;/2 i J;n

=() e 2V 1/2 t e (A-7)
n-l

jir/4 3/ n '~~

v(&) e 2/2r & e (A-8)
n-l

Se- fabut i ( - J2t)(t n)-4ad p n4(Ao (0 )nul

uIM e " j/4 3v- ' 1/2 11[ - j 2 .te (A-10)

3nn1

where It I and It') are zeros of w2(t) and wj(t), respectively, and they

n n2

are tabulated in [12], [14) and p. 478 of [201.

(iii) Small argument asymptotic expansion: For real positive & and & - 0,

J__ /4 3 / 2 + C3  7 i e-J1/4 9/2  3 6

v() % I - C 60 + 512 - 4.141 x 10-& +
(A-li)

ejT/14 3/2 + r -n49/
u(&) 2 1e4 2 + 2 + 64- / - 3.701 x 10- +

(A-12)

1 Ji/4 3/2 7_1 3 - 7 _- ir/4 9/2 -26

V1(C) + e- - 12 6 TT e + 4.555 x 10- 6 + ...
(A-13)

_Vn 3 t/ 1 270 3 r ' ae- n/4 7/225

v'(C) , _-J3/41/2 + 2 + - 2.485 x 10 +
8 20 1024 (-4

u' M -- 1Fn e-i~/4.12 + j 2 45F; -jir/4 7/215
4 ~ 4~/ ~~ 4 1 2~~ + 1 28, e 2.221 x 10 O +

(A-15)

(iv) Numerical evaluation: For C _ o' the residue series representation

with the first ten terms in the summation may be used. For < 0' the small

argument asymptotic expansion with the first five terms may be used. It has

been indicated in [ll] that the smoothest crossover is obtained if C0  0.6.

T11 the prosenc study, we set 40 . 0.7, where the difference in the two

reLresenrat Ions is less than 0.1% in magnitude and 0.9* in phase.
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~AEDIX B

COMPUTER LISTING FORCALCUIATING-'MUTUAL
ADMITTANCE ON: A' CONE BASEtD;-N RAY TECHNIQUE,

PROGRAM
1~SCOPE (INPUTvTAPE6,OUTPLJTPTAPE5=1NPUT)

c

C

C * MUTUAL ADMITTANCE OF SLOTS ON A CONE~

C *oCHN

C A

C *

C4 &*1 PRCI:O SINGLEEE
C41# CAGUG LFOLTWAN

C4 *A P.MCHN. D C ANG *7 E E OPJT-" YTM
C *

C *

LAATT E :E 10/11/77*

C *
C MLC COPE *CHZ R~.A-y-rv-Y

DIMn PECSION : INGLE(13
REL 4-1TLNUAE 0 rTRANl0
fd-1* ACHN W D YBR10 E7)COP~R YTM

CO M N / A~ / r ytfl l<iy ly*2 F ytFyIPAIYE'
CLF9C -PCVFvCJ

D ATES mCiS(N: 0/1/7

REALBSI ALAL CNLOPY R t(0 R2(0
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F-'1=4,oAATAN( a.t6)'
P102=2i.*r'I $ SQIIRT2~SORT(2.)
tbEi~b 0-/PI $ ACN=i#

~PRP4T*, INPUT ,A LINE OF t1ESAGE ABOUTHECRE JB

§11FRA( 0 O)L

PrIfNT*,i HALF CONE 6NGLE='
REA'tPTHATHE

PRINTf*, 'Pl v A2vD2" v
RE#AD*vAlybPA2iiD2
PRINT*' WI1,W22=*y
REAri*YW11 YW 2
PRINT*v' 4 OF PHI=",
READ*Y'NP
PRINT*v" I[NPUT PHI(N)v ONE ON EACH LINE"
DO 010 INP=IYNP

9A43 READ*rANGLE(INP)
PRINT*v" 0 OF SETS OF C',
READ*vNSC
PR INT* v ' INPUT Ct ONE SET ON EACH LINE"
DO 916 INSC=1sYNSC

916 REAI*PR11(INSC)PR22(INSC)
PRINt*, ' INPUJT THE INTEGRATION GRIDS'
PR INT* v ' WHICH ARE CORRESFOND)ED TO (Al ,B1 A2pB2)"
REA)D*YIFP2, IPI1P4,1P3j
PRINT*v ' THANK YC)U FOR YOUR ACCURATE INPUT!1
WRITE(6,531.5TITLE
WRITE(6yl11)

$1'* MUTUAL ADMITTANCE OF SLOTS ON A CONE *'/vl5Xv'*'.v44Xy'*'

11.11 FORMAT(/v20('*')/v'*'/p'* FREQUENCY : KnO,6238D 01 </AEEO

tCCC CcccCCCCC

TllETllA---TI.IATHE*RADN

A'TN.;TAN ( TIlEF HA)
ACO:-COS C Ti IFTI IlA)
WRI rE: (6 P.!.!2) TIIATHE

222; %AT/2('" EMER HALF CONE ANGLl.=*vF7.?v

V 11G v" "2



W R itt &Y333 )'1-ili YA2 B2
1,33 Fr-MAT U/?20(HN *~ SLOT DIMENSION <WAVELFENGT1> :

$F7.3)Xp 'l1 Y7*3av'" r"k0 A= ' .-iY5, ,41t"y

wRIrEc(6 v444t:L:L i W22
444 FrRMAT(/Y20()~),*/ SLOT ORIENTATION : Wl=-',F'7.2

~ IOR~t(,2Q'*/,*"/'* INTEMGRATION GRID I ", 12

AN~-13O5/TETA-iY~~5+. 72THEHAt,459*ThiImAf *2

WfjtlJTWI ND2/fF'1,

WIDTfl3=KB/IP3

bO 100, -I:1vNSC,
WRITE(&6 6

666 iiORMAT(////,lQX~$$$$$ PATA OUTPUT $$$$.

TERPMi =I(A2 ( (R2Thi3/2, **2 WIR 1-KBI /2. 0*'2) / 2,I2)4 0

PAKT-i=A 1 *D1 *kA2*Kh2*9dRT-(ArN/ (PI I2*'t-RM1*TEkM2))
PA~rT"21 / :00# *I **4*KR1*I R2*SN)
PAT3=8SIN (101/2, )*SIN (KB2/2.)/(IVBI *102/4 #)
LDD1=s'NSR*bOs (ANSL '
Dbiri'ANE~h*SIN (ANSL)
2,Y ri =CMPI.X (11DID r 1'L'2)

$*CE5P (CtPLX0 EOPI/4 .-ml-KR2))*PART I*PART2*PaNT3
$, *SNW*iN(W2)

TMOG=ICA SZYTIP)
I tHAG.E0.O.)GOTO 37
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